首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultrafast Exciton Self‐Trapping and Delocalization in Cycloparaphenylenes: The Role of Excited‐State Symmetry in Electron‐Vibrational Coupling
Authors:Juno Kim  Ryohei Kishi  Eiichi Kayahara  Woojae Kim  Shigeru Yamago  Masayoshi Nakano  Dongho Kim
Abstract:Upon photon absorption, π‐conjugated organics are apt to undergo ultrafast structural reorganization via electron‐vibrational coupling during non‐adiabatic transitions. Ultrafast nuclear motions modulate local planarity and quinoid/benzenoid characters within conjugated backbones, which control primary events in the excited states, such as localization, energy transfer, and so on. Femtosecond broadband fluorescence upconversion measurements were conducted to investigate exciton self‐trapping and delocalization in cycloparaphenylenes as ultrafast structural reorganizations are achieved via excited‐state symmetry‐dependent electron‐vibrational coupling. By accessing two high‐lying excited states, one‐photon and two‐photon allowed states, a clear discrepancy in the initial time‐resolved fluorescence spectra and the temporal dynamics/spectral evolution of fluorescence spectra were monitored. Combined with quantum chemical calculations, a novel insight into the effect of the excited‐state symmetry on ultrafast structural reorganization and exciton self‐trapping in the emerging class of π‐conjugated materials is provided.
Keywords:cycloparaphenylene  excited-state symmetry  exciton self-trapping  fs broadband fluorescence upconversion spectroscopy  torsional relaxation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号