Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells |
| |
Authors: | Jin Ho Choi Sukyung Velu Ranganathan Kim Sungjee Lee Hyo Joong |
| |
Affiliation: | Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, South Korea. |
| |
Abstract: | A multilayer of CdSe quantum dots (QDs) was prepared on the mesoporous surface of a nanoparticulate TiO(2) film by a layer-by-layer (LBL) assembly using the electrostatic interaction of the oppositely charged QD surface for application as a sensitizer in QD-sensitized TiO(2) solar cells. To maximize the absorption of incident light and the generation of excitons by CdSe QDs within a fixed thickness of TiO(2) film, the experimental conditions of QD deposition were optimized by controlling the concentration of salt added into the QD-dissolved solutions and repeating the LBL deposition a few times. A proper concentration of salt was found to be critical in providing a deep penetration of QDs into the mesopore, thus leading to a dense and uniform distribution throughout the whole TiO(2) matrix while anchoring the oppositely charged QDs alternately in a controllable way. A series of post-treatments with (1) CdCl(2), (2) thermal annealing, and (3) ZnS-coating was found to be very critical in improving the overall photovoltaic properties, presumably through a better connection between QDs, effective passivation of QD's surface, and a high impedance of recombination, which were proved by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS) experiments. With a proper post-treatment of multilayered QDs as a sensitizer, the overall power conversion efficiency in the CdSe QD-sensitized TiO(2) solar cells could reach 1.9% under standard illumination condition of simulated AM 1.5G (100 mW/cm(2)). |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|