Quantum phase transition of cold atoms trapped in optical lattices |
| |
Authors: | Yao-hua Chen Wei Wu Guo-cai Liu Hong-shuai Tao Wu-ming Liu |
| |
Affiliation: | Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
| |
Abstract: | We review our recent theoretical advances in phase transition of cold atoms in optical lattices, such as triangular lattice, honeycomb lattice, and Kagomé lattice. By employing the new developed numerical methods called dynamical cluster approximation and cellular dynamical mean-field theory, the properties in different phases of cold atoms in optical lattices are studied, such as density of states, Fermi surface and double occupancy. On triangular lattice, a reentrant behavior of phase translation line between Fermi liquid state and pseudogap state is found due to the Kondo effect. We find the system undergoes a second order Mott transition from a metallic state into a Mott insulator state on honeycomb lattice and triangular Kagomé lattice. The stability of quantum spin Hall phase towards interaction on honeycomb lattice with spin-orbital coupling is systematically discussed. And we investigate the transition from quantum spin Hall insulator to normal insulator in Kagomé lattice which includes a nearest-neighbor intrinsic spin-orbit coupling and a trimerized Hamiltonian. In addition, we propose the experimental protocols to observe these phase transition of cold atoms in optical lattices. |
| |
Keywords: | quantum phase transition optical lattice DMFT spin–orbit coupling |
本文献已被 SpringerLink 等数据库收录! |
| 点击此处可从《Frontiers of Physics》浏览原始摘要信息 |
|
点击此处可从《Frontiers of Physics》下载全文 |