首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling the spreading rate of controlled communicable epidemics through an entropy-based thermodynamic model
Authors:WenBin Wang  ZiNiu Wu  ChunFeng Wang  RuiFeng Hu
Affiliation:1. Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
2. School of Electro-Mechanical Engineering, Xidian University, Beijing, 100084, China
Abstract:A model based on a thermodynamic approach is proposed for predicting the dynamics of communicable epidemics assumed to be governed by controlling efforts of multiple scales so that an entropy is associated with the system. All the epidemic details are factored into a single and time-dependent coefficient, the functional form of this coefficient is found through four constraints, including notably the existence of an inflexion point and a maximum. The model is solved to give a log-normal distribution for the spread rate, for which a Shannon entropy can be defined. The only parameter, that characterizes the width of the distribution function, is uniquely determined through maximizing the rate of entropy production. This entropy-based thermodynamic (EBT) model predicts the number of hospitalized cases with a reasonable accuracy for SARS in the year 2003. This EBT model can be of use for potential epidemics such as avian influenza and H7N9 in China.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号