Abstract: | ![]() In beam injection flame furnace AAS (BIFF-AAS) the sample is introduced as a free-flying high-speed liquid beam into an AAS flame-heated nickel tube, resulting in a considerable improvement in the power of detection. For optimization of beam generation different nozzle types (smooth jet nozzles, turbulent working nozzles) have been compared at different pressures. It was found that the type of the nozzle hardly influences the analytical signal. However, the flow rates resulting from the different inner diameters of the nozzles and the applied pressures led to drastic changes in the analytical signal. For these investigations a recently developed 0.6 MPa (84 psig) diaphragm pump system was used. Furthermore, for the first time ever sub-critical liquid carbon dioxide has been used simultaneously as a liquid gas-pressure pump, as carrier in a flow-injection system (FIA), and for the beam generation. Transport of the carrier takes place as a result of the head pressure (6 MPa) of the liquid CO2 in the gas cylinder. For volatile elements (e.g. Cd, Hg, Pb, and Tl) detection limits between 0.2 µg L–1 (Cd) and 28 µg L–1 (Hg) were found, the standard deviation was from 0.6% to 3.2% depending on the element, concentration, and sample volume used. The use of liquid CO2 as a carrier in FIA systems opens up new possibilities for online sample pretreatment and trace preconcentration. |