首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进SSD的车辆小目标检测方法
引用本文:刘源, 娄亚鑫, 张平, 杨一帆, 李亚伟, 伍凌帆, 张弘. 全局-实例特征对齐域适应检测方法及系统设计[J]. 应用光学, 2024, 45(5): 946-955. DOI: 10.5768/JAO202445.0502002
作者姓名:刘源  娄亚鑫  张平  杨一帆  李亚伟  伍凌帆  张弘
作者单位:1.北京航空航天大学 宇航学院,北京 102206;2.93129部队,北京 100036
基金项目:国家自然科学基金(62002005)
摘    要:

在实际应用检测模型时,由于真实场景和训练数据集间的差异,检测算法的效果受到较大影响。为了在目标场景中获得更好的检测效果,通常需要采集、标注数据后训练,不仅成本高昂且流程复杂。提出基于注意力机制的全局-实例域适应检测算法与系统,仅需采集部分真实场景数据即可进行迁移学习,实现模型快速训练和边缘端-云端结合的远程部署。
该域适应检测算法中,基于注意力机制的全局特征对抗学习算法可减弱背景特征在迁移学习中的负作用;基于字典学习的实例级特征对齐方法,对实例级特征进行高精度对齐。经过实验对比,本文的方法达到了接近SOTA(state-of-the-art)的水平,并通过消融实验定量地证明了本方法对于域适应检测效果的提升。本文将提出的域适应检测技术与具有数据传输链路的边缘端系统结合,在实际场景中使检测效果提升近10个点。




关 键 词:域适应检测  实例级  注意力  边缘端设备
收稿时间:2023-09-28
修稿时间:2023-10-23
点击此处可从《应用光学》浏览原始摘要信息
点击此处可从《应用光学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号