首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photocatalytic degradation of amoxicillin by carbon quantum dots modified K2Ti6O13 nanotubes: Effect of light wavelength
Authors:Qiankun Chen  Long Chen  Juanjuan Qi  Yingqian Tong  Yitao Lv  Chaokai Xu  Jinren Ni  Wen Liu
Institution:The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Beijing Innovation Center for Engineering Science and Advanced Technology(BIC-ESAT), Peking University, Beijing 100871, China
Abstract:A novel carbon quantum dots modified potassium titanate nanotubes (CQDs/K2Ti6O13) composite photocatalyst was synthesized by hydrothermal treatment combined with calcination. X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) indicated formation of potassium titanate nanotubes and successful deposition of CQDs onto K2Ti6O13. The photocatalytic performance of CQDs/K2Ti6O13 composite was evaluated by degradation of amoxicillin (AMX) under the irradiation of visible light and lights with the wavelengths of 365, 385, 420, 450, 485, 520, 595 and 630 nm. The results showed that the photocatalytic activity of CQDs/K2Ti6O13 hybrid material was greatly enhanced compared with the neat K2Ti6O13 calcined at 300℃. The narrowed band gap energy (Eg) and transfer of photo-excited electron by CQDs inhibited the immediate combination of electron-hole pairs, thus promoting photocatalytic activity. Moreover, CQDs/K2Ti6O13 exhibited a broad spectrum of photocatalytic ability and it was interesting that the photocatalytic activity decreased with the increase of the irradiation wavelength. Reactive oxygen species (ROS) quenching tests suggested the hole (h+) and hydroxyl radical (·OH) played the primary roles in photocatalytic degradation of AMX. Moreover, CQDs/K2Ti6O13 showed good reusability for AMX photocatalytic degradation after five successive runs. This study proposed an available method for titanate nanomaterials modification, and the developed novel CQDs/K2Ti6O13 hybrid material is promising for potential application on antibiotics removal from water and wastewater.
Keywords:Potassium titanate nanotubes  Carbon quantum dots  Photocatalysis  Antibiotics  Photo energy  
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《中国化学快报》浏览原始摘要信息
点击此处可从《中国化学快报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号