Affiliation: | (1) Institute of Chemical Technologies and Analytics, TU Vienna, Getreidemarkt 6/164–AC, 1060 Vienna, Austria;(2) Forschungszentrum Rossendorf, P.O. Box 510119, 01314 Dresden, Germany |
Abstract: | Ion implantation is a well-known standard procedure in electronic device technology for precise and controlled introduction of dopants into silicon. However, damage caused by implantation acts as effective gettering zones, collecting unwanted metal impurities. This effect can be applied for proximity gettering reducing the concentration of impurities in the active device region. In this study the consequences of high-energy ion implantation into silicon and of subsequent annealing were analysed by means of secondary ion mass spectrometry (SIMS). Depth profiles were recorded of such impurities as copper, oxygen and carbon to obtain information about their gettering behaviour. The differences in impurities gettering behaviour were studied as a function of the implanted ions, P and Si, of the implantation dose and annealing time at T=900°C. Besides impurities gettering at the mean projected range (Rp) of implanted ions, Rp-effect, defects at around half of the projected ion range, Rp/2-effect, and even in some cases beyond Rp, trans-Rp-effect, have also been found to be effective in gettering of material impurities. |