首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics
Authors:Engui Fan  
Institution:

Key Laboratory for Nonlinear Mathematical Models and Methods, Institute of Mathematics, Fudan University, Shanghai 200433, PR China

Abstract:In this paper, we devise a new unified algebraic method to construct a series of explicit exact solutions for general nonlinear equations. Compared with most existing methods such as tanh method, Jacobi elliptic function method and homogeneous balance method, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the solutions according to the values of some parameters. The solutions obtained in this paper include (a) polynomial solutions, (b) exponential solutions, (c) rational solutions, (d) triangular periodic wave solutions, (e) hyperbolic, and soliton solutions, (f) Jacobi, and Weierstrass doubly periodic wave solutions. The efficiency of the method can be demonstrated on a large variety of nonlinear equations such as those considered in this paper, combined KdV–MKdV, Camassa–Holm, Kaup–Kupershmidt, Jaulent–Miodek, (2+1)-dimensional dispersive long wave, new (2+1)-dimensional generalized Hirota, (2+1)-dimensional breaking soliton and double sine-Gordon equations. In addition, the links among our proposed method, the tanh method, the extended method and the Jacobi function expansion method are also clarified generally.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号