首页 | 本学科首页   官方微博 | 高级检索  
     

顽火辉石(Mg0.92,Fe0.08)SiO3的冲击相变和高压状态方程及其地球物理意义
引用本文:杨金科,龚自正,邓力维,张莉,费英伟. 顽火辉石(Mg0.92,Fe0.08)SiO3的冲击相变和高压状态方程及其地球物理意义[J]. 高压物理学报, 2007, 21(1): 45-54
作者姓名:杨金科  龚自正  邓力维  张莉  费英伟
作者单位:1. 西南交通大学高温高压物理研究所,四川成都,610031
2. 西南交通大学高温高压物理研究所,四川成都,610031;中国空间技术研究院总装与环境工程部,北京,100094
3. 西南交通大学高温高压物理研究所,四川成都,610031;华盛顿卡内基研究院地球物理实验室,美国华盛顿,20015
4. 华盛顿卡内基研究院地球物理实验室,美国华盛顿,20015
基金项目:国家自然科学基金 , 国家自然科学基金 , 高等学校博士学科点专项科研项目
摘    要:
 用阻抗匹配法和电探针技术在48~140 GPa冲击压力范围内对化学组分为(Mg0.92, Fe0.08)SiO3、初始密度为3.06 g/cm3的天然顽火辉石进行了冲击压缩实验。根据本工作13发实验数据,结合McQueen等人的数据可以看出,(Mg0.92, Fe0.08)SiO3顽火辉石在冲击压缩过程中,大约经历三个明显区域:低压相区,压力范围为0~40 GPa;混合相区,压力范围为40~67 GPa;高压相区,压力范围为68~140 GPa。在低压相区,D-u关系已由McQueen给出;而在高压相区(68~140 GPa),可由本实验数据得到。由叠加原理计算得到的混合物(Mg0.92, Fe0.08)O(Mw)+SiO2(St)的D-u关系及p-ρ关系曲线明显偏离了实验数据的拟合曲线,从而排除了在高达140 GPa冲击压力下,钙钛矿结构的(Mg0.92, Fe0.08)SiO3发生向氧化物化学分解相变的可能性。对高压相区的实验数据进行拟合,可以得到(Mg0.92, Fe0.08)SiO3钙钛矿的Grüneisen参数γ。通过三阶Birch-Murnaghan有限应变状态方程,由冲击波实验数据得到了零压等熵体积模量K0S=259.6(9) GPa及其对压力的一阶偏导数K′0S=4.20(5),其ρ0=4.19 g/cm3。(Mg0.92, Fe0.08)SiO3钙钛矿冲击压缩下的密度数据与PREM密度剖面吻合很好,支持钙钛矿为主要成分的下地幔模型。

关 键 词:(Mg0.92  Fe0.08)SiO3-钙钛矿  冲击压缩  状态方程  相稳定性  下地幔矿物学组成
文章编号:1000-5773(2007)01-0045-10
收稿时间:2005-10-12
修稿时间:2006-01-12

Equation of State and Phase Transition of (Mg0.92, Fe0.08) SiO3 Enstatite under Shock Compression and Its Geophysical Implications
YANG Jin-Ke,GONG Zi-Zheng,DENG Li-Wei,ZHANG Li,FEI Ying-Wei. Equation of State and Phase Transition of (Mg0.92, Fe0.08) SiO3 Enstatite under Shock Compression and Its Geophysical Implications[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 45-54
Authors:YANG Jin-Ke  GONG Zi-Zheng  DENG Li-Wei  ZHANG Li  FEI Ying-Wei
Affiliation:1. Institute of High Pressure &; High Temperature Physics, Southwest Jiaotong University, Chengdu 610031, China;2. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China;3.Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015, USA
Abstract:
We performed shock wave experiments on a natural pyroxene with chemical composition close to (Mg0.92, Fe0.08)SiO3 and initial density of 3.06 g/cm3 at pressures between 48 and 140 GPa, using impedance match method and electrical probe technique. Considering McQueen et. al. data, it is obvious that (Mg0.92, Fe0.08)SiO3 goes through three phase regions in the procedure of shock compression: Low-pressure phase region (LPR), mixed phase region (MPR), and high-pressure phase region (HPR), corresponding to the pressure 0~40 GPa, 40~67 GPa and 68~140 GPa, respectively. In low-pressure phase region, the relationship between shock wave velocity D and particle velocity u was expressed by McQueen et. al. data. Then in high-pressure phase region (at pressures between 68 to 140 GPa), it can be described linearly from our experiment data. The calculated D-u relationship for the assemblage of (Mg0.92, Fe0.08)O(Mw)+SiO2(St) is significantly different from the experimental data, excluding the possibility of chemical decomposition of perovskite to oxides during the shock compression. The Grüneisen parameter γ can be obtained by fitting the experimental data. Using the third-order Birch-Murnaghan finite strain equation of state, the shock experimental data yield a zero-pressure bulk modulus K0S=259.6(9) GPa and its pressure derivative K′0S=4.20(5), with ρ0=4.19 g/cm3. A comparison of the experimental Hugoniot densities of perovskite with the PREM density profile prefers a perovskite-dominant lower mantle model.
Keywords:(Mg0.92  Fe0.08)SiO3-perovskite  shock compression  equation of state  phase stability  lower mantle
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《高压物理学报》浏览原始摘要信息
点击此处可从《高压物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号