首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct numerical simulations of two-layer viscosity-stratified flow
Authors:Qing Cao  Kausik Sarkar  Ajay K Prasad  
Institution:

Department of Mechanical Engineering, University of Delaware, 126 Spencer Lab, Newark, DE 19716, USA

Abstract:Two-dimensional simulations of flow instability at the interface of a two-layer, density-matched, viscosity-stratified Poiseuille flow are performed using a front-tracking/finite difference method. We present results for the small-amplitude (linear) growth rate of the instability at small to medium Reynolds number for varying thickness ratio n, viscosity ratio m, and wavenumber. We also present results for large-amplitude non-linear evolution of the interface for varying viscosity ratio and interfacial tension. For the linear case, the interfacial mode is neutrally stable for View the MathML source as predicted by analysis. The growth rate is proportional to Reynolds number for small Re, and increases with viscosity ratio. The growth rate also increases when the thickness of the more viscous layer is reduced. Strong non-linear behavior is observed for relatively large initial perturbation amplitude. The higher viscosity fluid is drawn out as a finger that penetrates into the lower viscosity layer. The simulated interface shape compares well with previously reported experiments. Increasing interfacial tension retards the growth rate of the interface as expected, whereas increasing the viscosity ratio enhances it. Drop formation at the small Reynolds number considered in this study is precluded by the two-dimensional nature of the calculations.
Keywords:Viscosity-stratified flow  Direct numerical simulations  Front tracking  Linear stability  Non-linear stability  Finger formation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号