首页 | 本学科首页   官方微博 | 高级检索  
     


Are pore size distributions in microfiltration membranes measurable by two-phase flow porosimetry?
Authors:Leos Zeman
Affiliation:

39 Hammond Place, Woburn, MA 01801, USA

Abstract:The issue of evaluating equivalent pore diameter distributions in membrane microfilters from gas-liquid (g-l) porosimetry data has been critically examined. Experiments performed with one isotropic and one composite anisotropic membrane in both possible orientations revealed conspicous dependence of the obtained (g-l) porosimetry peaks on imposed pressure ramp rates, p. Interference of this kinetic effect can be eliminated from the measured data by extrapolation to p = 0. The ramp rate effect is most likely caused by tortuous pore length distribution, and relatively long times required for liquid expulsion. For two experiments, the observed effects of p could be reconciled with predictions of the Schlesinger-Bechhold theory [Bechold et al., Kolloid Z., 55 (1931) 172–198]. The data obtained with the thin top layer of the composite membrane facing intruding air directly did deviate somewhat from the theory. Pores characterized by (g-l) porosimetry are likely of the “throat type”, and their size distribution is considerably more narrow than that obtained for the “node-type” pores by SEM-image analysis [Zeman and Denault, J. Membrane Sci., 71 (1992) 221–231]. A single bivariate distribution function was constructed for these two distinct pore populations. Flow-weighted or number fraction distributions can be calculated from the extrapolated porosimetry data. For narrow ranges of “throat” diameters, these distributions are fairly similar.
Keywords:Membrane preparation and structure   Microfiltration   Microporous and porous membranes   Two-phase porosimetry   Ultrafiltration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号