首页 | 本学科首页   官方微博 | 高级检索  
     


Two-phase flow in heterogeneous porous media II: Numerical experiments for flow perpendicular to a stratified system
Authors:Michel Quintard  Stephen Whitaker
Affiliation:(1) Laboratoire Energétique et Phénomenes de Transfert - U.A. CNRS 873, Ecole Nationale Supérieure des Arts et Métiers, 33405 Talence Cedex, France;(2) Present address: Department of Chemical Engineering, University of California, 95616 Davis, CA, USA
Abstract:In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990).
$$begin{gathered}  p_c left| {_y  = left{ {p_c } right}^c } right|_x  + left( {rho _gamma   - rho _beta  } right)g cdot left( {y - left{ y right}^c } right) + Omega _gamma   cdot [left( {y + b_gamma  } right) - left{ {y + b_gamma  } right}^c ] - Omega _beta   cdot [left( {y + b_beta  } right) - left{ {y + b_beta  } right}^c ] +  hfill    + tfrac{1}{2}nabla Omega _gamma  :[left( {yy + D_gamma  } right) - left{ {yy + D_gamma  } right}^c ] - tfrac{1}{2}nabla Omega _beta  :[left( {yy + D_beta  } right) - left{ {yy + D_beta  } right}^c ] +  hfill    + [left( {mu _gamma  A_gamma   - mu _beta  A_beta  } right) - left{ {mu _gamma  A_gamma   - mu _beta  A_beta  } right}^c ]frac{{partial left{ { in _beta  } right}*}}{{partial t}} +  hfill    + [left( {mu _gamma  c_gamma   - mu _beta  c_beta  } right) - left{ {mu _gamma  c_gamma   - mu _beta  c_beta  } right}^c ] cdot nabla frac{{partial left{ { in _beta  } right}*}}{{partial t}} +  hfill    + mu _gamma  (E_gamma   - left{ {E_gamma  } right}^c ):nabla Phi _gamma   - mu _beta  (E_beta   - left{ {E_beta  } right}^c ):nabla Phi _{beta  cdot }  hfill  end{gathered} $$
Herepc¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {pcx represents the large-scale capillary pressure evaluated at the centroid.In addition to{pc}c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as
$$left{ {p_c } right}^c  = left{ {leftlangle {p_gamma  } rightrangle ^gamma  } right}^gamma   - left{ {leftlangle {p_beta  } rightrangle ^beta  } right}^beta  ,$$
,
$$p_c left| {_y  = left{ {p_c } right}^c } right|_{x cdot } $$
, This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters Abetaohgr scalar that maps part{isinbeta}*/partt onto
$$hat p_{beta omega } $$
- Abetaeegr scalar that maps part{isinbeta}*/partt onto
$$hat p_{beta eta } $$
- Aohgreegr interfacial area between the ohgr-region and the eegr-region contained within, m2 - Aohgrsgr interfacial area between the ohgr-region and the sgr-region contained within, m2 - Aeegrsgr interfacial area between the sgr-region and the sgr-region contained within, m2 - abetaohgr vector that maps (part{isinbeta}*/partt) onto
$$hat v_{beta omega } $$
, m - abetaeegr vector that maps (part{isinbeta}*/partt) onto
$$hat v_{beta eta } $$
, m - bbetaohgr vector that maps (nabla{langpbetarangbeta}betargrbetag) onto
$$hat p_{beta omega } $$
, m - bbetaeegr vector that maps (nabla{langpbetarangbeta}betargrbetag) onto
$$hat p_{beta eta } $$
, m - Bbetaohgr second order tensor that maps (nabla{langpbetarangbeta}betargrbetag) onto
$$hat v_{beta omega } $$
, m2 - Bbetaeegr second order tensor that maps (nabla{langpbetarangbeta}betargrbetag) onto
$$hat v_{beta eta } $$
, m2 - cbetaohgr vector that maps (nablapart{isinbeta}*/partt) onto
$$hat p_{beta omega } $$
, m - cbetaeegr vector that maps (nablapart{isinbeta}*/partt) onto
$$hat p_{beta eta } $$
, m - Cbetaohgr second order tensor that maps (nablapart{isinbeta}*/partt) onto
$$hat v_{beta omega } $$
, m2 - Cbetaeegr second order tensor that maps (nablapart{isinbeta}*/partt) onto
$$hat v_{beta eta } $$
. m2 - Dbetaohgr third order tensor that maps (nablaOHgrbeta) onto
$$hat v_{beta omega } $$
, m - Dbetaeegr third order tensor that maps (nablaOHgrbeta) onto
$$hat v_{beta eta } $$
, m - Dbetaohgr second order tensor that maps (nablaOHgrbeta) onto
$$hat p_{beta omega } $$
, m2 - Dbetaeegr second order tensor that maps (nablaOHgrbeta) onto
$$hat p_{beta eta } $$
, m2 - Ebetaohgr third order tensor that maps (DeltaPHgr) onto
$$hat v_{beta omega } $$
, m - Ebetaeegr third order tensor that maps (DeltaPHgr) onto
$$hat v_{beta eta } $$
, m - Ebetaohgr second order tensor that maps (DeltaPHgr) onto
$$hat p_{beta omega } $$
- Ebetaeegr second order tensor that maps (DeltaPHgr) onto
$$hat p_{beta eta } $$
- Fscrohgr pc=Fscrohgr(isinbetaohgr), capillary pressure relationship in theohgr-region - Fscreegr pc=Fscreegr(isinbetaeegr), capillary pressure relationship in theeegr-region - g gravitational vector, m/s2 - hamilt largest of either hamiltohgr or hamilteegr - hamiltohgr - hamilteegr - i unit base vector in thex-direction - I unit tensor - Kbeta local volume-averagedbeta-phase permeability, m2 - Kohgr local volume-averagedbeta-phase permeability in theohgr-region, m2 - Keegr local volume-averagedbeta-phase permeability in theeegr-region, m2 - {Kbeta}beta large-scale intrinsic phase average permeability for thebeta-phase, m2 - 
$$hat K_beta  $$
Kbeta–{Kbeta}beta, large-scale spatial deviation for thebeta-phase permeability, m2 - 
$$hat K_{beta omega } $$
Kbetaohgr–{Kbeta}beta, large-scale spatial deviation for thebeta-phase permeability in theohgr-region, m2 - 
$$hat K_{beta eta } $$
Kbetaeegr–{Kbeta}beta, large-scale spatial deviation for thebeta-phase permeability in theeegr-region, m2 - Kbeta* large-scale permeability for thebeta-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - Lscr characteristic length associated with large-scale averaged quantities, m - Ii i = 1, 2, 3, lattice vectors for a unit cell, m - lohgr characteristic length associated with theohgr-region, m - ;eegr characteristic length associated with theeegr-region, m - lH characteristic length associated with a local heterogeneity, m - phmmatbeta 
$${ (hat K_beta   + Delta { K_beta  } ^beta  ) cdot nabla D_beta  }  + { K_beta  } ^beta   cdot { nabla D_beta  } , m^3 $$
- nohgreegr unit normal vector pointing from theohgr-region toward theeegr-region (nohgreegr=–neegrohgr) - nohgrsgr unit normal vector pointing from theohgr-region toward thesgr-region (nohgrsgr=–nsgrohgr) - pbeta pressure in thebeta-phase, N/m2 - langpbetarangbeta local volume-averaged intrinsic phase average pressure in thebeta-phase, N/m2 - {langpbetarangbeta}beta large-scale intrinsic phase average pressure in the capillary region of thebeta-phase, N/m2 - langpbetarangohgrbeta local volume-averaged intrinsic phase average pressure for thebeta-phase in theohgr-region, N/m2 - langpbetarangeegrbeta local volume-averaged intrinsic phase average pressure for thebeta-phase in theeegr-region, N/m2 - 
$$hat p_beta  $$
langpbetarangbeta–{langpbetarangbeta}beta, large scale spatial deviation for thebeta-phase pressure, N/m2 - 
$$hat p_{beta omega } $$
langpbetarangohgrbeta–{langpbetarangbeta}beta, large scale spatial deviation for thebeta-phase pressure in theohgr-region, N/m2 - 
$$hat p_{beta eta } $$
langpbetarangeegrbeta–{langpbetarangbeta}beta, large scale spatial deviation for thebeta-phase pressure in theeegr-region, N/m2 - Pc langpgammaranggamma–{langpbetarangbeta}beta, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r0 radius of the local averaging volume, m - R0 radius of the large-scale averaging volume, m - r position vector, m - Rscrbeta 
$${ (hat K_beta   + Delta { K_beta  } ^beta  ) cdot nabla E_beta  }  + { K_beta  } ^beta   cdot { nabla E_beta  } , m$$
, m - Sbeta isinbeta/isin, local volume-averaged saturation for thebeta-phase - Sbeta* {isinbeta}*{isin}*, large-scale average saturation for thebeta-phaset time, s - t time, s - ubeta 
$${ (hat K_beta   + Delta { K_beta  } ^beta  ) cdot nabla A_beta  }  + { K_beta  } ^beta   cdot { nabla A_beta  } , m$$
, m - Ubeta 
$${ (hat K_beta   + Delta { K_beta  } ^beta  ) cdot nabla c_beta  }  + { K_beta  } ^beta   cdot { nabla c_beta  } , m^2 $$
, m2 - vbeta beta-phase velocity vector, m/s - langvbetarangohgr local volume-averaged phase average velocity for thebeta-phase in theohgr-region, m/s - langvbetarangeegr local volume-averaged phase average velocity for thebeta-phase in theeegr-region, m/s - {langvbetarang}beta large-scale intrinsic phase average velocity for thebeta-phase in the capillary region of thebeta-phase, m/s - {langvbetarang} large-scale phase average velocity for thebeta-phase in the capillary region of thebeta-phase, m/s - 
$$hat v_beta  $$
langvbetarang–{langvbetarang}beta, large-scale spatial deviation for thebeta-phase velocity, m/s - 
$$hat v_{beta omega } $$
langvbetarangohgr–{langvbetarang}beta, large-scale spatial deviation for thebeta-phase velocity in theohgr-region, m/s - 
$$hat v_{beta eta } $$
langvbetarangeegr–{langvbetarang}beta, large-scale spatial deviation for thebeta-phase velocity in theeegr-region, m/s - V local averaging volume, m3 - Vbeta volume of thebeta-phase in, m3 - Vinfin large-scale averaging volume, m3 - Vbeta capillary region for thebeta-phase within, m3 - Vgamma capillary region for thegamma-phase within, m3 - Vc intersection of m3 - Vohgr volume of theohgr-region within, m3 - Veegr volume of theeegr-region within, m3 - Vohgr(beta) capillary region for thebeta-phase within theohgr-region, m3 - Veegr(beta) capillary region for thebeta-phase within theeegr-region, m3 - Vsgr(beta) , region in which thebeta-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, mGreek Letters isin local volume-averaged porosity - isinbeta local volume-averaged volume fraction for thebeta-phase - isinbetaohgr local volume-averaged volume fraction for thebeta-phase in theohgr-region - isinbetaeegr local volume-averaged volume fraction for thebeta-phase in theohgr-region - isinbetasgr local volume-averaged volume fraction for thebeta-phase in theohgr-region (This is directly related to the irreducible saturation.) - {isinbeta}beta large-scale intrinsic phase average volume fraction for thebeta-phase - {isinbeta} large-scale phase average volume fraction for thebeta-phase - {isinbeta}* large-scale spatial average volume fraction for thebeta-phase - 
$$hat  in _beta  $$
isinbeta–{isinbeta}beta, large-scale spatial deviation for thebeta-phase volume fraction - 
$$hat  in _{beta omega } $$
isinbetaohgr–{isinbeta}beta, large-scale spatial deviation for thebeta-phase volume fraction in theohgr-region - 
$$hat  in _{beta eta } $$
isinbetaeegr–{isinbeta}beta, large-scale spatial deviation for thebeta-phase volume fraction in theeegr-region - psgrbeta a generic local volume-averaged quantity associated with thebeta-phase - rgrbeta mass density of themgr-phase, kg/m3 - rgrgamma mass density of thegamma-phase, kg/m3 - mgrbeta viscosity of thebeta-phase, N s/m2 - mgrgamma viscosity of thegamma-phase, N s/m2 - sgr interfacial tension of thebeta -gamma phase system, N/m - PHgrbeta 
$$left{ {(hat K_beta   + Delta { K_beta  } ^beta  ) cdot Delta Omega _beta  } right} + left{ {K_beta  } right}^beta   cdot left{ {Delta Omega _beta  } right}$$
, N/m - phgrbeta , volume fraction of thebeta-phase capillary (active) region - phgrgamma , volume fraction of thegamma-phase capillary (active) region - phgrohgr , volume fraction of theohgr-region (phgrohgr+phgreegr=1) - phgreegr , volume fraction of theeegr-region (phgrohgr+phgreegr=1) - OHgrbeta nabla{langpbetarangbeta}betargrbetag, N/m3 - OHgrgamma nabla{langpgammaranggamma}gammargrgammag, N/m3
Keywords:Two-phase  heterogeneous porous media  large-scale averaging  numerical experiments  stratified media
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号