首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two-phase flow in heterogeneous porous media II: Numerical experiments for flow perpendicular to a stratified system
Authors:Michel Quintard  Stephen Whitaker
Institution:(1) Laboratoire Energétique et Phénomenes de Transfert - U.A. CNRS 873, Ecole Nationale Supérieure des Arts et Métiers, 33405 Talence Cedex, France;(2) Present address: Department of Chemical Engineering, University of California, 95616 Davis, CA, USA
Abstract:In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990). 
$$\begin{gathered}  p_c \left| {_y  = \left\{ {p_c } \right\}^c } \right|_x  + \left( {\rho _\gamma   - \rho _\beta  } \right)g \cdot \left( {y - \left\{ y \right\}^c } \right) + \Omega _\gamma   \cdot \left( {y + b_\gamma  } \right) - \left\{ {y + b_\gamma  } \right\}^c ] - \Omega _\beta   \cdot \left( {y + b_\beta  } \right) - \left\{ {y + b_\beta  } \right\}^c ] +  \hfill \\   + \tfrac{1}{2}\nabla \Omega _\gamma  :\left( {yy + D_\gamma  } \right) - \left\{ {yy + D_\gamma  } \right\}^c ] - \tfrac{1}{2}\nabla \Omega _\beta  :\left( {yy + D_\beta  } \right) - \left\{ {yy + D_\beta  } \right\}^c ] +  \hfill \\   + \left( {\mu _\gamma  A_\gamma   - \mu _\beta  A_\beta  } \right) - \left\{ {\mu _\gamma  A_\gamma   - \mu _\beta  A_\beta  } \right\}^c ]\frac{{\partial \left\{ { \in _\beta  } \right\}*}}{{\partial t}} +  \hfill \\   + \left( {\mu _\gamma  c_\gamma   - \mu _\beta  c_\beta  } \right) - \left\{ {\mu _\gamma  c_\gamma   - \mu _\beta  c_\beta  } \right\}^c ] \cdot \nabla \frac{{\partial \left\{ { \in _\beta  } \right\}*}}{{\partial t}} +  \hfill \\   + \mu _\gamma  (E_\gamma   - \left\{ {E_\gamma  } \right\}^c ):\nabla \Phi _\gamma   - \mu _\beta  (E_\beta   - \left\{ {E_\beta  } \right\}^c ):\nabla \Phi _{\beta  \cdot }  \hfill \\ \end{gathered} $$
Herep c ¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {p c x represents the large-scale capillary pressure evaluated at the centroid.In addition to{p c } c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as 
$$\left\{ {p_c } \right\}^c  = \left\{ {\left\langle {p_\gamma  } \right\rangle ^\gamma  } \right\}^\gamma   - \left\{ {\left\langle {p_\beta  } \right\rangle ^\beta  } \right\}^\beta  ,$$
, 
$$p_c \left| {_y  = \left\{ {p_c } \right\}^c } \right|_{x \cdot } $$
, This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters A betaohgr scalar that maps part{isinbeta}*/partt onto 
$$\hat p_{\beta \omega } $$
- A betaeegr scalar that maps part{isinbeta}*/partt onto 
$$\hat p_{\beta \eta } $$
- A ohgreegr interfacial area between the ohgr-region and the eegr-region contained within, m2 - A ohgrsgr interfacial area between the ohgr-region and the sgr-region contained within, m2 - A eegrsgr interfacial area between the sgr-region and the sgr-region contained within, m2 - a betaohgr vector that maps (part{isinbeta}*/partt) onto 
$$\hat v_{\beta \omega } $$
, m - a betaeegr vector that maps (part{isinbeta}*/partt) onto 
$$\hat v_{\beta \eta } $$
, m - b betaohgr vector that maps (nabla{langpbetarangbeta}betargrbeta g) onto 
$$\hat p_{\beta \omega } $$
, m - b betaeegr vector that maps (nabla{langpbetarangbeta}betargrbeta g) onto 
$$\hat p_{\beta \eta } $$
, m - B betaohgr second order tensor that maps (nabla{langpbetarangbeta}betargrbeta g) onto 
$$\hat v_{\beta \omega } $$
, m2 - B betaeegr second order tensor that maps (nabla{langpbetarangbeta}betargrbeta g) onto 
$$\hat v_{\beta \eta } $$
, m2 - c betaohgr vector that maps (nablapart{isinbeta}*/partt) onto 
$$\hat p_{\beta \omega } $$
, m - c betaeegr vector that maps (nablapart{isinbeta}*/partt) onto 
$$\hat p_{\beta \eta } $$
, m - C betaohgr second order tensor that maps (nablapart{isinbeta}*/partt) onto 
$$\hat v_{\beta \omega } $$
, m2 - C betaeegr second order tensor that maps (nablapart{isinbeta}*/partt) onto 
$$\hat v_{\beta \eta } $$
. m2 - D betaohgr third order tensor that maps (nablaOHgr beta) onto 
$$\hat v_{\beta \omega } $$
, m - D betaeegr third order tensor that maps (nablaOHgr beta) onto 
$$\hat v_{\beta \eta } $$
, m - D betaohgr second order tensor that maps (nablaOHgr beta) onto 
$$\hat p_{\beta \omega } $$
, m2 - D betaeegr second order tensor that maps (nablaOHgr beta) onto 
$$\hat p_{\beta \eta } $$
, m2 - E betaohgr third order tensor that maps (DeltaPHgr) onto 
$$\hat v_{\beta \omega } $$
, m - E betaeegr third order tensor that maps (DeltaPHgr) onto 
$$\hat v_{\beta \eta } $$
, m - E betaohgr second order tensor that maps (DeltaPHgr) onto 
$$\hat p_{\beta \omega } $$
- E betaeegr second order tensor that maps (DeltaPHgr) onto 
$$\hat p_{\beta \eta } $$
- Fscrohgr p c =Fscrohgr(isinbetaohgr), capillary pressure relationship in theohgr-region - Fscreegr p c =Fscreegr(isinbetaeegr), capillary pressure relationship in theeegr-region - g gravitational vector, m/s2 - hamilt largest of either hamiltohgr or hamilteegr - hamiltohgr - hamilteegr - i unit base vector in thex-direction - I unit tensor - K beta local volume-averagedbeta-phase permeability, m2 - K ohgr local volume-averagedbeta-phase permeability in theohgr-region, m2 - K eegr local volume-averagedbeta-phase permeability in theeegr-region, m2 - {K beta}beta large-scale intrinsic phase average permeability for thebeta-phase, m2 - 
$$\hat K_\beta  $$
K beta–{K beta}beta, large-scale spatial deviation for thebeta-phase permeability, m2 - 
$$\hat K_{\beta \omega } $$
K betaohgr–{K beta}beta, large-scale spatial deviation for thebeta-phase permeability in theohgr-region, m2 - 
$$\hat K_{\beta \eta } $$
K betaeegr–{K beta}beta, large-scale spatial deviation for thebeta-phase permeability in theeegr-region, m2 - K beta * large-scale permeability for thebeta-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - Lscr characteristic length associated with large-scale averaged quantities, m - I i i = 1, 2, 3, lattice vectors for a unit cell, m - l ohgr characteristic length associated with theohgr-region, m - ; eegr characteristic length associated with theeegr-region, m - l H characteristic length associated with a local heterogeneity, m - phmmatbeta 
$$\{ (\hat K_\beta   + \Delta \{ K_\beta  \} ^\beta  ) \cdot \nabla D_\beta  \}  + \{ K_\beta  \} ^\beta   \cdot \{ \nabla D_\beta  \} , m^3 $$
- n ohgreegr unit normal vector pointing from theohgr-region toward theeegr-region (n ohgreegr=–n eegrohgr) - n ohgrsgr unit normal vector pointing from theohgr-region toward thesgr-region (n ohgrsgr=–n sgrohgr) - p beta pressure in thebeta-phase, N/m2 - langp betarangbeta local volume-averaged intrinsic phase average pressure in thebeta-phase, N/m2 - {langp betarangbeta}beta large-scale intrinsic phase average pressure in the capillary region of thebeta-phase, N/m2 - langp betarang ohgr beta local volume-averaged intrinsic phase average pressure for thebeta-phase in theohgr-region, N/m2 - langp betarang eegr beta local volume-averaged intrinsic phase average pressure for thebeta-phase in theeegr-region, N/m2 - 
$$\hat p_\beta  $$
langp betarangbeta–{langp betarangbeta}beta, large scale spatial deviation for thebeta-phase pressure, N/m2 - 
$$\hat p_{\beta \omega } $$
langp betarang ohgr beta –{langp betarangbeta}beta, large scale spatial deviation for thebeta-phase pressure in theohgr-region, N/m2 - 
$$\hat p_{\beta \eta } $$
langp betarang eegr beta –{langp betarangbeta}beta, large scale spatial deviation for thebeta-phase pressure in theeegr-region, N/m2 - P c langp gammaranggamma–{langp betarangbeta}beta, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r 0 radius of the local averaging volume, m - R 0 radius of the large-scale averaging volume, m - r position vector, m - Rscrbeta 
$$\{ (\hat K_\beta   + \Delta \{ K_\beta  \} ^\beta  ) \cdot \nabla E_\beta  \}  + \{ K_\beta  \} ^\beta   \cdot \{ \nabla E_\beta  \} , m$$
, m - S beta isinbeta/isin, local volume-averaged saturation for thebeta-phase - S beta * {isinbeta}*{isin}*, large-scale average saturation for thebeta-phaset time, s - t time, s - u beta 
$$\{ (\hat K_\beta   + \Delta \{ K_\beta  \} ^\beta  ) \cdot \nabla A_\beta  \}  + \{ K_\beta  \} ^\beta   \cdot \{ \nabla A_\beta  \} , m$$
, m - U beta 
$$\{ (\hat K_\beta   + \Delta \{ K_\beta  \} ^\beta  ) \cdot \nabla c_\beta  \}  + \{ K_\beta  \} ^\beta   \cdot \{ \nabla c_\beta  \} , m^2 $$
, m2 - v beta beta-phase velocity vector, m/s - langv betarangohgr local volume-averaged phase average velocity for thebeta-phase in theohgr-region, m/s - langv betarangeegr local volume-averaged phase average velocity for thebeta-phase in theeegr-region, m/s - {langv betarang}beta large-scale intrinsic phase average velocity for thebeta-phase in the capillary region of thebeta-phase, m/s - {langv betarang} large-scale phase average velocity for thebeta-phase in the capillary region of thebeta-phase, m/s - 
$$\hat v_\beta  $$
langv betarang–{langv betarang}beta, large-scale spatial deviation for thebeta-phase velocity, m/s - 
$$\hat v_{\beta \omega } $$
langv betarangohgr–{langv betarang}beta, large-scale spatial deviation for thebeta-phase velocity in theohgr-region, m/s - 
$$\hat v_{\beta \eta } $$
langv betarangeegr–{langv betarang}beta, large-scale spatial deviation for thebeta-phase velocity in theeegr-region, m/s - V local averaging volume, m3 - V beta volume of thebeta-phase in, m3 - V infin large-scale averaging volume, m3 - V beta capillary region for thebeta-phase within, m3 - V gamma capillary region for thegamma-phase within, m3 - V c intersection of m3 - V ohgr volume of theohgr-region within, m3 - V eegr volume of theeegr-region within, m3 - V ohgr(beta) capillary region for thebeta-phase within theohgr-region, m3 - V eegr(beta) capillary region for thebeta-phase within theeegr-region, m3 - V sgr(beta) , region in which thebeta-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, m Greek Letters isin local volume-averaged porosity - isinbeta local volume-averaged volume fraction for thebeta-phase - isinbetaohgr local volume-averaged volume fraction for thebeta-phase in theohgr-region - isinbetaeegr local volume-averaged volume fraction for thebeta-phase in theohgr-region - isinbetasgr local volume-averaged volume fraction for thebeta-phase in theohgr-region (This is directly related to the irreducible saturation.) - {isinbeta}beta large-scale intrinsic phase average volume fraction for thebeta-phase - {isinbeta} large-scale phase average volume fraction for thebeta-phase - {isinbeta}* large-scale spatial average volume fraction for thebeta-phase - 
$$\hat  \in _\beta  $$
isinbeta–{isinbeta}beta, large-scale spatial deviation for thebeta-phase volume fraction - 
$$\hat  \in _{\beta \omega } $$
isinbetaohgr–{isinbeta}beta, large-scale spatial deviation for thebeta-phase volume fraction in theohgr-region - 
$$\hat  \in _{\beta \eta } $$
isinbetaeegr–{isinbeta}beta, large-scale spatial deviation for thebeta-phase volume fraction in theeegr-region - psgr beta a generic local volume-averaged quantity associated with thebeta-phase - rgr beta mass density of themgr-phase, kg/m3 - rgr gamma mass density of thegamma-phase, kg/m3 - mgr beta viscosity of thebeta-phase, N s/m2 - mgr gamma viscosity of thegamma-phase, N s/m2 - sgr interfacial tension of thebeta -gamma phase system, N/m - PHgr beta 
$$\left\{ {(\hat K_\beta   + \Delta \{ K_\beta  \} ^\beta  ) \cdot \Delta \Omega _\beta  } \right\} + \left\{ {K_\beta  } \right\}^\beta   \cdot \left\{ {\Delta \Omega _\beta  } \right\}$$
, N/m - phgr beta , volume fraction of thebeta-phase capillary (active) region - phgr gamma , volume fraction of thegamma-phase capillary (active) region - phgr ohgr , volume fraction of theohgr-region (phgr ohgr+phgr eegr=1) - phgr eegr , volume fraction of theeegr-region (phgr ohgr+phgr eegr=1) - OHgr beta nabla{langp betarangbeta}betargrbeta g, N/m3 - OHgr gamma nabla{langp gammaranggamma}gammargrgamma g, N/m3
Keywords:Two-phase  heterogeneous porous media  large-scale averaging  numerical experiments  stratified media
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号