Abstract: | The non-linear differential equations of motion, and boundary conditions, for Euler-Bernoulli beams able to experience flexure along two principal directions (and, thus, flexure in any direction in space), torsion and extension are formulated. The beam's material is assumed to be Hookean but its properties may vary along its span. The nonlinearities present in the differential equations include contributions from the curvature expression and from inertia terms. A set of differential equations with polynomial nonlinearities to cubic order, suitable for a perturbation analysis of the motion, is also developed and the validity of the inextensional approximation is assessed. The equations developed here reduce to those for an inextensional beam. In Part II of this paper, a specific example of application is analyzed and the results obtained are compared with those available in the literature where several non-linear terms have been neglected a priori. |