首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of temperature and 1 MeV proton irradiation effects on the light emission in bulk silicon (npn) emitter-base bipolar junctions
Authors:Haddou Elghazi  Anouar Jorio  Izedine Zorkani
Institution:

aSolid State Physics Laboratory, Faculty of Sciences, Dhar El Mahraz, Fez, Morocco

bRegional Center of Interface, Sidi Mohammed Ben Abdellah University, Fez, Morocco

Abstract:In this work, we present the temperature and 1 MeV irradiation proton effects on the light emission in bulk silicon emitter-base junctions for direct and reverse polarizations. Our samples were exposed at room temperature to 5.3 × 108, 5.3 × 1010, 5 × 1011, 5 × 1012 and 5 × 1013 p cm−2. The spectral range for which electroluminescence spectrums were recorded for forward and reverse polarizations is 0.6–2 eV. For forward bias, EL maximum intensity occurs at 1.0923 ± 0.0001 eV (structure (a)) which decreases as function of irradiation fluencies. For reverse bias, the spectra contain two structures (b) and (c). The first structure (c) occurred at 1.6243 ± 0.0013 eV is independent of irradiation while the second structure (b) decreases as function of fluencies irradiation. The Gaussian deconvolution of (b) shows two sub-structures (b1) and (b2) which are located, respectively, at 0.8064 ± 0.0004 eV and 0.9917 ± 0.0016 eV. We studied temperature dependence of full width at half-maximum (FWHM) and we found that the phonons involved in (a), (b1) and (b2) on the one hand and (c) on the other hand are not the same. Moreover, we obtained from the study of EL intensity temperature dependence that the activation energies of (a), (b1) and (b2) are identical and differ from that of (c). These effects enable us to conclude that visible light emission does not have the same origin as that in infra-red. From these observations, we can attribute the structures (a) and (b) to indirect inter-bands transitions and (c) to a direct intra-band transitions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号