Inner-valence photoionization of O((1)D): experimental evidence for the 2s(2)2p(4)((1)D)-->2s(1)2p(5)((1)P) transition |
| |
Authors: | Flesch R Wirsing A Barthel M Plenge J Rühl E |
| |
Affiliation: | Physikalische und Theoretische Chemie, Freie Universit?t Berlin, Takustr 3, Berlin, Germany. |
| |
Abstract: | Photoionization and autoionization of electronically excited atomic oxygen O((1)D) are investigated in the energy range between 12 and 26 eV using tunable laser-produced plasma radiation in combination with time-of-flight mass spectrometry. A broad, asymmetric, and intense feature is observed that is peaking at 20.53+/-0.05 eV. It is assigned to the 2s(2)2p(4)((1)D)-->2s(1)2p(5)((1)P) transition, which subsequently autoionizes by a Coster-Kronig transition, as predicted by the previous theoretical work [K. L. Bell et al., J. Phys. B 22, 3197 (1989)]. Specifically, the energy of the unperturbed transition occurs at 20.35+/-0.07 eV. Its shape is described by a Fano profile revealing a q parameter of 4.25+/-0.8 and a width of gamma=2.2+/-0.15 eV. Absolute photoionization cross section sigma is derived, yielding sigma=22.5+/-2.3 Mb at the maximum of the resonance. In addition, weak contributions to the O((1)D) yield from dissociative ionization originating from molecular singlet oxygen [O(2)((1)Delta(g))] are identified as well. Possible applications of the 2s(2)2p(4)((1)D)-->2s(1)2p(5)((1)P) transition as a state-selective and sensitive probe of excited oxygen in combination with photoionization mass spectrometry are briefly discussed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|