Multiferroicity: the coupling between magnetic and polarization orders |
| |
Authors: | K.F. Wang Z.F. Ren |
| |
Affiliation: | 1. Nanjing National Laboratory of Microstructures, Nanjing University and Nanjing 210093, China, and School of Physics, South China Normal University , Guangzhou 510006, China;2. International Center for Materials Physics, Chinese Academy of Sciences , Shenyang, China;3. Department of Physics , Boston College , Chestnut Hill, MA 02467, USA |
| |
Abstract: | Multiferroics, defined for those multifunctional materials in which two or more kinds of fundamental ferroicities coexist, have become one of the hottest topics of condensed matter physics and materials science in recent years. The coexistence of several order parameters in multiferroics brings out novel physical phenomena and offers possibilities for new device functions. The revival of research activities on multiferroics is evidenced by some novel discoveries and concepts, both experimentally and theoretically. In this review, we outline some of the progressive milestones in this stimulating field, especially for those single-phase multiferroics where magnetism and ferroelectricity coexist. First, we highlight the physical concepts of multiferroicity and the current challenges to integrate the magnetism and ferroelectricity into a single-phase system. Subsequently, we summarize various strategies used to combine the two types of order. Special attention is paid to three novel mechanisms for multiferroicity generation: (1) the ferroelectricity induced by the spin orders such as spiral and E-phase antiferromagnetic spin orders, which break the spatial inversion symmetry; (2) the ferroelectricity originating from the charge-ordered states; and (3) the ferrotoroidic system. Then, we address the elementary excitations such as electromagnons, and the application potentials of multiferroics. Finally, open questions and future research opportunities are proposed. |
| |
Keywords: | multiferroicity ferroelectricity magnetism magnetoelectric coupling multiferroics polarization magnetization time-reversion symmetry breaking spatial-inversion symmetry breaking helical spin-ordered state charge-ordered state electromagnon ferrotoroidicity |
|
|