首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation on thermal conductivity and physical properties of polythiophene/p-phenylenediamine-graphene oxide and polythiophene-co-poly(methyl methacrylate)/p-phenylenediamine graphene oxide composites
Authors:Rahim Shah  Bakhtiar Muhammad  Muhammad Khan
Institution:1. Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan;2. College of Physics, Optoelectronics and Energy, Sochoow University, Suzhou, China;3. Department of Chemistry, Hazara University, Mansehra, Pakistan;4. School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, P.R. China
Abstract:An efficient approach was employed to simultaneously functionalize and reduce the graphene oxide (GO) with p-phenylene diamine (PPD) using simple refluxing. There was a possibility of nucleophilic substitution of amino moieties of PPD with the epoxy groups of GO. The polythiophene (PTh) and polythiophene-co-poly(methylmethacrylate) (PTh-co-PMMA) nanocomposites with chemically modified GO were prepared using in situ polymerization technique. Two series of nanocomposites that is PTh/PPD-GO and PTh-co-PMMA/PPD-GO were designed. The nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM), thermal conductivity, and electrical conductivity measurement. The FTIR spectra depicted the characteristic absorption peaks for the formation of copolymer and their composites with PPD-GO. The SEM micrographs showed that the PPD-GO nanosheets were homogeneously dispersed in copolymer matrix forming nano-granular morphology. The nanofluids were prepared by suspending modified GO particles inside the basefluid of polythiophene and PTh-co-PMMA. The thermal conductivity of nanocomposites was significantly improved even with low PPD-GO loading. The thermal conductivity of PTh-co-PMMA/PPD-GO with 1.5 wt.% filler was increased to 1.42 W/mK at a higher temperature. The XRD patterns confirmed the presence of chemical interactions between the copolymer and filler particles. The electrical conductivity of PTh-co-PMMA/PPD-GO was also found to increase in the range of 6.1 × 10?3–2.5 × 10?2 S/cm. Novel PTh-co-PMMA/PPD-GO-based nanocomposite is potentially significant in high-performance thermal systems.
Keywords:Polythiophene-co-poly(methyl methacrylate)  p-phenylene diamine  graphene oxide  thermal conductivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号