首页 | 本学科首页   官方微博 | 高级检索  
     

分子动力学模拟压水反应堆中氢气对水的影响
引用本文:刘华敏,范永胜,田时海,周维,陈旭. 分子动力学模拟压水反应堆中氢气对水的影响[J]. 物理学报, 2012, 61(6): 62801-062801
作者姓名:刘华敏  范永胜  田时海  周维  陈旭
作者单位:四川大学原子核科学技术研究所 辐射物理及技术教育部重点实验室, 成都 610064;四川大学原子核科学技术研究所 辐射物理及技术教育部重点实验室, 成都 610064;绵阳师范学院数学与计算机科学学院, 绵阳 621000;四川大学原子核科学技术研究所 辐射物理及技术教育部重点实验室, 成都 610064;四川大学原子核科学技术研究所 辐射物理及技术教育部重点实验室, 成都 610064;四川大学原子核科学技术研究所 辐射物理及技术教育部重点实验室, 成都 610064
基金项目:国家自然科学基金(批准号:10676022)和四川省科技支撑计划基金(批准号:2009GZ0232)资助的课题.
摘    要:通过分子动力学方法模拟了在常温常压下(1 atm, 298 K)和在压水堆环境下(155 atm, 626 K), 水分子数为256, 氢分子数为0, 25, 50, 75和100等不同数目时, 粒子系统的动力学性质和微观结构, 分析了不同氢气对水中溶解氧的影响. 从模拟结果可知, 在常温常压和压水堆环境下, 当氢粒子数分别为0, 25, 50, 75和100时, 粒子系统的均方位移会随氢分子数增加而增加, 并且常温常压下的增长幅度远小于压水堆环境下的增长幅度, 如压水堆环境下氢分子数为75时系统的均方位移约是常温常压下氢分子数为75时系统的均方位移的6.02倍, 比压水堆环境下氢分子数0时系统的均方位移增加了131.88%. 此外, 粒子系统的微观结构, 从径向分布函数看, 在常温常压下随着氢分子数目的增加而小幅度增加, 这与常温常压下因氢气溶解在水中增大了氧离子周围的粒子密度相符合. 而在压水堆环境下, 氢分子数为75, 50, 25与为0时的水比较, 其径向分布均不会有太大的变化, 而分子数为100时会出现明显增加, 与为0时的水比较其径向分布增加了22.00%. 模拟结果表明, 往压水堆中的水加入氢气能明显地抑制水中的溶解氧.

关 键 词:分子动力学  压水堆  氢气  均方位移
收稿时间:2011-08-22

Molecular dynamics simulation for the effect of hydrogen on the water of pressurized water reactors
Liu Hua-Min,Fan Yong-Sheng,Tian Shi-Hai,Zhou Wei and Chen Xu. Molecular dynamics simulation for the effect of hydrogen on the water of pressurized water reactors[J]. Acta Physica Sinica, 2012, 61(6): 62801-062801
Authors:Liu Hua-Min  Fan Yong-Sheng  Tian Shi-Hai  Zhou Wei  Chen Xu
Affiliation:Sichuan University, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Chengdu 610064, China;;Sichuan University, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Chengdu 610064, China;Mianyang Normal University, College of Mathematics and Computer Science, Mianyang 621000, Ch;Sichuan University, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Chengdu 610064, China;;Sichuan University, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Chengdu 610064, China;;Sichuan University, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Chengdu 610064, China;
Abstract:In this paper, molecular dynamics is used to simulate dynamic properties and micro-structure of the water-hydrogen particle system under various conditions: 1 atm, 293 K; pressurized water reactor (PWR) environment of 155 atm, 626 K; the number of water molecules of 256, numbers of hydrogen (H2) molecules of 0, 25, 50, 75 and 100, and the mean square displacement (MSD) in the particle system increases with the number of particles of the hydrogen increasing. Under the PWR environment, with hydrogen molecule number being 75, the MSD is about 6 times higher than that in chamber ambient. At the same time, under such a condition, the MSD of particle system increases 131.8829% higher than that in the case of the number being 0. In addition, the micro-structure of particle systems, from the view of the radial distribution functions (RDF), increase with the increase of concentration of hydrogen in chamber ambient, which coincides with the fact that the hydrogen dissolution in water increases the particle density around oxygen ions at nomal temperature and normal pressure. While in the PWR environment, the radial distributions of the water with the numbers of hydrogen molecules of 75, 50, 25 and 0 have no big change, but the radial distribution with the number of hydrogen molecules of 100 increases significantly and it is 22.0048% higher than that in the case of the number being 0. It can be seen from simulation data that hydrogen added to PWR significantly inhibits the oxygen dissolution in water. This phenomenon and its cause are revealed comprehensively in this paper.
Keywords:molecular dynamics  pressurized water reactor  hydrogen  the mean square displacement
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号