Effect of hydrocarbon chain and pH on structural and topographical characteristics of phospholipid monolayers |
| |
Authors: | Lucero A Rodríguez Niño M R Gunning A P Morris V J Wilde P J Rodríguez Patino J M |
| |
Affiliation: | Departamento de Ingeniería Qímica, Facultad de Qímica, Universidad de Sevilla, c/. Prof. García González, 1. 41012-Seville, Spain. |
| |
Abstract: | Structural characteristics (structure, elasticity, topography, and film thickness) of dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) monolayers were determined at the air-water interface at 20 degrees C and pH values of 5, 7, and 9 by means of surface pressure (pi)-area (A) isotherms combined with Brewster angle microscopy (BAM) and atomic force microscopy (AFM). From the pi-A isotherms and the monolayer elasticity, we deduced that, during compression, DPPC monolayers present a structural polymorphism at the air-water interface, with the homogeneous liquid-expanded (LE) structure; the liquid-condensed structure (LC) showing film anisotropy and DPPC domains with heterogeneous structures; and, finally, a homogeneous structure when the close-packed film molecules were in the solid (S) structure at higher surface pressures. However, DOPC monolayers had a liquid-expanded (LE) structure under all experimental conditions, a consequence of weak molecular interactions because of the double bond of the hydrocarbon chain. DPPC and DOPC monolayer structures are practically the same at pH values of 5 and 7, but a more expanded structure in the monolayer with a lower elasticity was observed at pH 9. BAM and AFM images corroborate, at the microscopic and nanoscopic levels, respectively, the same structural polymorphism deduced from the pi-A isotherm for DPPC and the homogeneous structure for DOPC monolayers as a function of surface pressure and the aqueous-phase pH. The results also corroborate that the structural characteristics and topography of phospholipids (DPPC and DOPC) are highly dependent on the presence of a double bond in the hydrocarbon chain. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|