首页 | 本学科首页   官方微博 | 高级检索  
     检索      


DFT computational studies on rotation barriers,tautomerism, intramolecular hydrogen bond,and solvent effects in 8‐hydroxyquinoline
Authors:Andrew E Shchavlev  Alexei N Pankratov  Alexei V Shalabay
Abstract:Intramolecular hydrogen binding interactions in 8‐hydroxyquinoline, both in its zwitterionic tautomer and in the rotamer without the intramolecular hydrogen bond (IHB), have been computed using the B3LYP and MPW1K density functionals. The rotation of the O? H bond and intramolecular proton transfer reactions were studied theoretically. The following theory levels have been applied: B3LYP/6‐31G(d,p), B3LYP/6‐311++G(d,p), MPW1K/6‐311++G(d,p), and MPW1K/6‐311++G(2d,3p)//MPW1K/6‐311++G(d,p). Natural bond orbital (NBO) analysis has also been carried out. The effect of medium (benzene, chloroform, tetrahydrofuran, 1,2‐dichloroethane, acetone, water) was simulated using the self‐consistent reaction field (SCRF) method within the framework of the polarizable continuum model (PCM), at the MPW1K/6‐311++G(d,p) level. The evolution of geometry, relative energies, heights of rotation (around the O? H bond) and tautomerization barriers, IHB energies, and ΔG(solv) have been systematically investigated. The results obtained have shown the failure to neglect some changes of the above characteristics in polar media with respect to the gaseous phase. The series of stability of the forms under study in the gaseous phase remains the same in solution. Thus, in spite of the important role of the solvent electrostatic effects, the intrinsic stability of those species overcomes the solvent effects. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006
Keywords:DFT  8‐hydroxyquinoline  intramolecular hydrogen bond  rotation barriers  tautomerism  solvent effects
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号