首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetic Theory and Lax Equations for Shock Clustering and Burgers Turbulence
Authors:Govind?Menon  Ravi?Srinivasan
Institution:1.Division of Applied Mathematics, Box F,Brown University,Providence,USA;2.Department of Mathematics,The University of Texas at Austin,Austin,USA
Abstract:We study shock statistics in the scalar conservation law ? t u+? x f(u)=0, x∈?, t>0, with a convex flux f and spatially random initial data. We show that the Markov property (in x) is preserved for a large class of random initial data (Markov processes with downward jumps and derivatives of Lévy processes with downward jumps). The kinetics of shock clustering is then described completely by an evolution equation for the generator of the Markov process u(x,t), x∈?. We present four distinct derivations for this evolution equation, and show that it takes the form of a Lax pair. The Lax equation admits a spectral parameter as in Manakov (Funct. Anal. Appl. 10:328–329, 1976), and has remarkable exact solutions for Burgers equation (f(u)=u 2/2). This suggests the kinetic equations of shock clustering are completely integrable.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号