Click coupled graphene for fabrication of high‐performance polymer nanocomposites |
| |
Authors: | Santosh Kumar Yadav Hye Jin Yoo Jae Whan Cho |
| |
Affiliation: | Department of Textile Engineering, Konkuk University, Seoul 143‐701, Korea |
| |
Abstract: | An effective technique of using click coupled graphene to obtain high‐performance polymer nanocomposites is presented. Poly(ε‐caprolactone) (PCL)‐click coupled graphene sheet (GS) reinforcing fillers are synthesized by the covalent functionalization of graphene oxide with PCL, and subsequently the PCL‐GS as a reinforcing filler was incorporated into a shape memory polyurethane matrix by solution casting. The PCL‐click coupled GS has shown excellent interaction with the polyurethane matrix, and as a consequence, the mechanical properties, thermal stability, thermal conductivity, and thermo‐responsive shape memory properties of the resulting nanocomposite films could be enhanced remarkably. In particular, for polyurethane nanocomposites incorporated with 2% PCL‐GS, the breaking stress, Young's modulus, elongation‐at‐break, and thermal stability have been improved by 109%, 158%, 28%, and 71 °C, respectively. This click coupling protocol offers the possibility to fully combine the extraordinary performance of GSs with the properties of polyurethane. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 |
| |
Keywords: | click chemistry functionalization graphene mechanical properties nanocomposites polyurethanes |
|
|