首页 | 本学科首页   官方微博 | 高级检索  
     


Electronic substituent effects on the cleavage specificity of a non-heme Fe(2+)-dependent beta-diketone dioxygenase and their mechanistic implications
Authors:Straganz Grit D  Hofer Hannes  Steiner Walter  Nidetzky Bernd
Affiliation:Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria. grit.straganz@TUGraz.at
Abstract:
Acinetobacter johnsonii acetylacetone dioxygenase (Dke1) is a non-heme Fe(II)-dependent dioxygenase that cleaves C-C bonds in various beta-dicarbonyl compounds capable of undergoing enolization to a cis-beta-keto enol structure. Results from 18O labeling experiments and quantitative structure-reactivity relationship analysis of electronic substituent effects on the substrate cleavage specificity of Dke1 are used to distinguish between two principle chemical mechanisms of reaction: one involving a 1,2-dioxetane intermediate and another proceeding via Criegee rearrangement. Oxygenative cleavage of asymmetrically substituted beta-dicarbonyl substrates occurs at the bond adjacent to the most electron-deficient carbonyl carbon. Replacement of the acetyl group in 1-phenyl-1,3-butanedione by a trifluoro-acetyl group leads to a complete reversal of cleavage frequency from 83% to only 8% fission of the bond next to the benzoyl moiety. The structure-activity correlation for Dke1 strongly suggests that enzymatic bond cleavage takes place via nucleophilic attack to generate a dioxetane, which then decomposes into the carboxylate and alpha-keto-aldehyde products.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号