Intermolecular complexes of HXeOH with water: stabilization and destabilization effects |
| |
Authors: | Nemukhin Alexander V Grigorenko Bella L Khriachtchev Leonid Tanskanen Hanna Pettersson Mika Räsänen Markku |
| |
Affiliation: | Department of Chemistry, Moscow State University, 119899 Moscow, Russian Federation. anem@lcc.chem.msu.ru |
| |
Abstract: | Theoretical and matrix-isolation studies of intermolecular complexes of HXeOH with water molecules are presented. The structures and possible decomposition routes of the HXeOH-(H(2)O)(n)(n = 0, 1, 2, 3) complexes are analyzed theoretically. It is concluded that the decay of these metastable species may proceed through the bent transition states (TSs), leading to the global minima on the respective potential energy surfaces, Xe + (H(2)O)(n+1). The respective barrier heights are 39.6, 26.6, 11.2, and 0.4 kcal/mol for n = 0, 1, 2, and 3. HXeOH in larger water clusters is computationally unstable with respect to the bending coordinate, representing the destabilization effect. Another decomposition channel of HXeOH-(H(2)O)(n), via a linear TS, leads to a direct break of the H-Xe bond of HXeOH. In this case, the attached water molecules stabilize HXeOH by strengthening the H-Xe bond. Due to the stabilization, a large blue shift of the H-Xe stretching mode upon complexation of HXeOH with water molecules is featured in calculations. On the basis of this computational result, the IR absorption bands at 1681 and 1742 cm(-1) observed after UV photolysis and annealing of multimeric H(2)O/Xe matrixes are assigned to the HXeOH-H(2)O and HXeOH-(H(2)O)(2) complexes. These bands are blue-shifted by 103 and 164 cm(-1) from the known monomeric HXeOH absorption. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|