首页 | 本学科首页   官方微博 | 高级检索  
     


Aspect ratio effects on three-dimensional incompressible flow in a two-sided non-facing lid-driven parallelepiped cavity
Authors:Fakher Oueslati  Brahim Ben Beya  Taieb Lili
Affiliation:Laboratoire de mécanique des fluides, Faculté des sciences de Tunis, Département de physique, 2092 El Manar 2, Tunis, Tunisia
Abstract:A numerical study of the three-dimensional fluid flow has been carried out to determine the effects of the transverse aspect ratio, Ay, on the flow structure in two-sided non-facing lid-driven cavities. The flow is complex, unstable and can undergo bifurcation. The numerical method is based on the finite volume method and multigrid acceleration. Computations have been investigated for several Reynolds numbers and various aspect ratio values. At a fixed Reynolds number, Re=500, the three-dimensional flow characteristics are analyzed considering four transverse aspect ratios, Ay=1,0.75,0.5 and 0.25. It is observed that the transition to the unsteady regime follows the classical scheme of a Hopf bifurcation. An analysis of the flow evolution shows that, at Ay=0.75, the flow bifurcates to a periodic regime at (Re=600) with a frequency f=0.093 less than the predicted value in the cubical cavity. A correlation is established when Ay=0.5 and gives the critical Reynolds number value. At Ay=0.25, the periodic regime occurs at high Re value beyond 3500, after which the flow becomes chaotic. It is shown that, when increasing Ay over the unit, the flow in the cavity exhibits a complex behavior. The kinetic energy transmission from the driven walls to the cavity center is reduced at low Ay values.
Keywords:Fluid mechanics   Aspect ratio   3D lid-driven cavity   Unsteady flow   Bifurcation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号