Abstract: | This work presents the study of optical constants and film thickness of blended organic thin films, emphasizing on the modeling procedure with modified genetic algorithm aided by absorption or transmittance spectra of both pure materials and the blends. Taking the blending of copper phthalocyanine(Cu Pc) and fullerene(C60) as an example, a simple, convenient and low-cost method for the determination of the optical constants and film thickness of blended organic thin films was demonstrated. New scheme for optical modeling of blended organic thin film was proposed by introducing peak energies of Cody-Lorentz oscillators of the pure materials, which were determined by fitting the film absorption of pure materials. These oscillators of pure materials could be recognized in the transmittance spectrum of their blends, and were further used as the initial searching ranges in the simulation of blended films. As a result, the constraint bounds of the unknown parameters were significantly reduced and modeling efficiency as well as fitting accuracy was improved. For instance, the fitting of the transmittance curves of blended films with different blending ratios reached reliable results in comparison with extinction coefficients obtained from experiment. |