首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heat transfer between gas-liquid spray stream flowing perpendicularly to the row of the cylinders
Authors:Docent Dr inż M Pawlowski  Dr inz B Siwoń
Institution:(1) Dept. of Chemical Engineering and Physical Chemistry, Technical University of Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
Abstract:Experimental investigation and analysis of heat transfer process between a gas-liquid spray flow and the row of smooth cylinders placed in the surface perpendicular to the flow has been performed. Among others, there was taken into account in the analysis the phenomenon of droplets bouncing and omitting the cylinder as well as the phenomenon of the evaporation process from the liquid film surface.In the experiments test cylinders were used, which were placed between two other cylinders standing in the row.From the experiments and the analysis the conclusion can be drawn that the heat transfer coefficients values for a row of the cylinders are higher than for a single cylinder placed in the gasliquid spray flow.
Wärmeübergang an eine senkrecht anf eine Zylinderreihe auftreffende Gas-Flüssigkeits-Sprüh-Strömung
Zusammenfassung Es wurden Messungen und theoretische Analysen des Wärmeübergangs zwischen einer Gas-FlüssigkeitsSprüh-Strömung und den glatten Oberflächen einer Zylinderreihe durchgeführt, die senkrecht zum Sprühstrahl angeordnet waren. Dabei wurde in der Analyse unter anderem das Phänomen betrachtet, daß die Tropfen die Zylinderwand treffen und verfehlen können und daß sich ein Verdampfungsprozeß aus dem flüssigen Film an der Zylinderoberfläche einstellt.Gemessen wurde an einem zwischen zwei Randzylindern befindlichen Zylinder.Die Experimente und die Analyse gestatten die Schlußfolgerung, daß der Wärmeübergangskoeffizient für eine Zylinderreihe höher ist als für einen einzelnen Zylinder in der Sprühströmung.

Nomenclature a distance between axes of cylinders, m - c l specific heat capacity of liquid, J/kg K - c g specific heat capacity of gas, J/kg K - D cylinder diameter, m - g l mass velocity of liquid, kg/m2s - ¯k average volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - k(THgr) local volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - L specific latent heat of vaporisation, J/kg - m mass fraction of water in gas-liquid spray flow, dimensionless - M constant in Eq. (9) - p pressure, Pa - p g statical pressure of gas, Pa - p w pressure of gas on the cylinder surface, Pa - p delta external pressure on the liquid film surface, Pa - r cylindrical coordinate, m - R radius of cylinder, m - T temperature, K, °C - T l, tl liquid temperature in the gas-liquid spray, K, °C - T w,tw temperature of cylinder surface, K, °C - T delta temperature of gas-liquid film interface, K - U liquid film velocity, m/s - w gas velocity on cylinder surface, m/s - w g gas velocity in free stream, m/s - W l liquid vapour mass ratio in free stream, dimensionless - W delta liquid vapour mass ratio at the edge of a liquid film, dimensionless - x coordinate, m - y coordinate, m - z complex variable, dimensionless - 
$$\bar \alpha $$
average heat transfer coefficient, W/m2K - agr theta local heat transfer coefficient, W/m2 K - 
$$\bar \alpha _g $$
average heat transfer coefficient between cylinder surface and gas, W/m2 K - agr g, THgr local heat transfer coefficient between cylinder surface and gas, W/m2 K - beta mass transfer coefficient, kg/m2s - delta liquid film thickness, m - delta lg dynamic diffusion coefficient of liquid vapour in gas, kg/m s - epsiv pressure distribution function on a cylinder surface - zeta function defined by Eq. (3) - eegr l liquid dynamic viscosity, kg/m s - eegr g gas dynamic viscosity, kg/m s - THgr cylindrical coordinate, rad, deg - lambda l thermal conductivity of liquid, W/m K - lambda g thermal conductivity of gas, W/m K - Deltapgr mass transfer driving force, dimensionless - rhov l density of liquid, kg/m3 - rhov g density of gas, kg/m3 - tau w shear stress on the cylinder surface, N/m2 - delta w shear stress exerted by gas at the liquid film surface, N/m2 - phiv air relative humidity, dimensionless - PSgr delta T delta-T w - PSgr w =T wTl Dimensionless parameters I= 
$$\bar \alpha /\bar \alpha _g $$
enhancement factor of heat transfer - m *=M l/Mg molar mass of liquid to the molar mass of gas ratio - Nu g= 
$$_g $$
D/lambda g gas Nusselt number - Pr g=c g eegrg/lambdag gas Prandtl number - Pr l=cleegrllambdal liquid Prandtl number - ¯r=(r–R)/delta dimensionless coordinate - Re g=wgD rhovg/eegrg gas Reynolds number - Re g,max=wg,max D rhovg/eegrg gas Reynolds number calculated for the maximal gas velocity between the cylinders - Sc=m * eegrg/deltal–g Schmidt number 
$$\bar \delta $$
=delta/R dimensionless film thickness
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号