首页 | 本学科首页   官方微博 | 高级检索  
     


A family of variable metric proximal methods
Authors:J. F. Bonnans  J. Ch. Gilbert  C. Lemaréchal  C. A. Sagastizábal
Affiliation:(1) INRIA, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
Abstract:We consider conceptual optimization methods combining two ideas: the Moreau—Yosida regularization in convex analysis, and quasi-Newton approximations of smooth functions. We outline several approaches based on this combination, and establish their global convergence. Then we study theoretically the local convergence properties of one of these approaches, which uses quasi-Newton updates of the objective function itself. Also, we obtain a globally and superlinearly convergent BFGS proximal method. At each step of our study, we single out the assumptions that are useful to derive the result concerned.
Keywords:Primary: 65K05  Secondary: 90C30, 52A41, 90C25
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号