首页 | 本学科首页   官方微博 | 高级检索  
     

基于多项式混沌的全局敏感度分析
引用本文:胡军,张树道. 基于多项式混沌的全局敏感度分析[J]. 计算物理, 2016, 33(1): 1-14. DOI: 10.3969/j.issn.1001-246X.2016.01.001
作者姓名:胡军  张树道
作者单位:北京应用物理与计算数学研究所, 北京 100094
基金项目:国家自然科学基金,中国工程物理研究院科学技术发展基金
摘    要:回顾基于多项式混沌和方差分解的全局敏感度分析方法,针对高维数随机空间和高阶多项式混沌展开面临的“维数灾难”问题,采用回归法、稀疏网格积分及基于l1优化的稀疏重构技术(即压缩感知技术)来减少非嵌入式多项式混沌方法所需的样本配置点数目.针对几个典型响应面模型(包括Ishigami函数、Sobol函数、Corner peak函数和Morris函数)进行Sobol全局敏感度指标计算,展示多项式混沌方法在基于方差分解的全局敏感度分析中的有效性.

关 键 词:多项式混沌  全局敏感度  维数灾难  稀疏重构  
收稿时间:2014-10-24
修稿时间:2015-05-29

Global Sensitivity Analysis Based on Polynomial Chaos
HU Jun,ZHANG Shudao. Global Sensitivity Analysis Based on Polynomial Chaos[J]. Chinese Journal of Computational Physics, 2016, 33(1): 1-14. DOI: 10.3969/j.issn.1001-246X.2016.01.001
Authors:HU Jun  ZHANG Shudao
Affiliation:Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Abstract:Global sensitivity analysis method based on polynomial chaos and variance decomposition is reviewed comprehensively. In order to alleviate "curse of dimensionality" coming from high-dimensional random spaces or high-order polynomial chaos expansions, several approaches such as least square regression, sparse grid quadrature and sparse recovery based on l1 minimization (i. e. compressive sensing) are used to reduce sample size of collocation points that needed by non-intrusive polynomial chaos method. With computation of Sobol global sensitivity indices for several benchmark response models including Ishigami function, Sobol function, Corner peak function and Morris function, effective implementations of polynomial chaos method for variance-based global sensitivity analysis are exhibited.
Keywords:polynomial chaos  global sensitivity  curse of dimensionality  sparse recovery
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算物理》浏览原始摘要信息
点击此处可从《计算物理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号