Abstract: | An electrostatic bond energy model is formulated to fit the enthalpies of formation and dipole moments of the alkanes and chloroalkanes. In this model, the charge distributions are calculated by an electrostatic approach similar to the "MSE" method, and the enthalpy of formation of a molecule is the sum of the bond energy terms plus the electrostatic energy of the interactions between the charges on all atoms. All parameters of this model are obtained by parameterization. The calculated dipole moments for 13 chloroalkanes and enthalpies of formation for 19 alkanes and non-geminal chloroalkanes agree with the determined values very well. To calculate the enthalpies of formation of geminal chloroalkanes, a correction mainly attributed to the van der Waals interactions in the geminal substituted group, about 24 kJ/mol per pair of geminal chlorine atoms, is introduced. |