首页 | 本学科首页   官方微博 | 高级检索  
     

不同贮藏期水蜜桃硬度及糖度的检测研究
作者姓名:刘燕德  张雨  姜小刚  孙旭东  徐海  刘昊辰
作者单位:华东交通大学机电与车辆工程学院,水果智能光电检测技术与;华东交通大学机电与车辆工程学院,水果智能光电检测技术与;华东交通大学机电与车辆工程学院,水果智能光电检测技术与;华东交通大学机电与车辆工程学院,水果智能光电检测技术与;华东交通大学机电与车辆工程学院,水果智能光电检测技术与;华东交通大学机电与车辆工程学院,水果智能光电检测技术与
基金项目:国家自然科学基金项目(31760344);水果光电检测技术能力提升项目(S2016-90);江西省教育厅科学技术研究项目(GJJ60516)资助。
摘    要:糖度和硬度作为水蜜桃的两个重要指标,决定其内部品质。在运输或售卖期间,水蜜桃果内水分流失,表面开始松软进而腐烂,内部品质发生变化。研究旨在探讨可见/近红外光谱预测水蜜桃不同贮藏期糖度和硬度的可行性,进一步预测水蜜桃的最佳贮藏期。采用漫透射和漫反射方式采集4个贮藏阶段的水蜜桃光谱,并测量糖度和硬度。分析了4个阶段水蜜桃的平均光谱,光谱强度随着贮藏天数增加而不断提高,且在650~680 nm区域内受果皮颜色及色素的变化产生波峰偏移。同时,分析了糖度和硬度的变化,糖度在贮藏期间逐渐提高,硬度在贮藏期间快速下降,最终糖度增加了3.31%,硬度下降了58.8%。采用多元散射校正、S-G卷积平滑、归一化处理及基线校正等预处理方法来减少噪声和误差对光谱的影响,并使用无信息变量消除(UVE)和连续投影算法(SPA)筛选特征波长,最后利用偏最小二乘回归(PLS)分别建立糖度和硬度的预测模型。分析糖度、硬度的PLS回归系数与平均光谱的波形发现,糖度的高回归系数分布在光谱多处,而硬度的该系数均在波峰波谷附近。SPA和UVE筛选的特征波长建立的糖度模型效果不佳,而硬度模型效果良好。结果表明,漫透射和漫反射检测方式下,糖度的最佳预测相关系数(Rp)及预测均方根误差(RMSEP)分别为0. 886,0.727和0.820,1.003,预处理方法分别是多元散射校正、平滑窗口宽度为3的S-G卷积平滑。此外,漫透射建立的硬度SPA-PLS模型,选用15个光谱变量,得到的Rp和RMSEP为0.798和0.976;而漫反射建立的UVE-PLS模型,选用113个光谱变量,得到的Rp和RMSEP为0.841和0.829。可以看出,漫透射方式预测水蜜桃贮藏期间的糖度更佳,而漫反射预测硬度更佳。利用可见/近红外光谱所建立的糖度和硬度预测模型,能够可靠地预测水蜜桃贮藏期内糖度和硬度的变化,对指导采摘、售卖时间和减少腐烂具有一定的参考价值。

关 键 词:可见/近红外光谱  水蜜桃贮藏  糖度和硬度  偏最小二乘回归
收稿时间:2019-12-27
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号