首页 | 本学科首页   官方微博 | 高级检索  
     

基于多核最小二乘支持向量机的永磁同步电机混沌建模及其实时在线预测
引用本文:陈强,任雪梅. 基于多核最小二乘支持向量机的永磁同步电机混沌建模及其实时在线预测[J]. 中国物理 B, 2010, 19(4): 2310-2318
作者姓名:陈强  任雪梅
作者单位:北京理工大学自动化学院, 北京 100081;北京理工大学自动化学院, 北京 100081
基金项目:国家自然科学基金(批准号:60474033和60974046)资助的课题.
摘    要:提出了多核最小二乘支持向量机的永磁同步电机混沌系统建模方法. 通过不同核函数的线性加权组合构造新的等价核,降低建模精度对核函数及其参数选择的依赖性. 理论上给出多核最小二乘支持向量机回归参数和模型输出值的求解方法. 采用关联积分计算方法对永磁同步电机混沌系统进行相空间重构,以窗式移动的在线学习方式对重构后的永磁同步电机混沌序列进行一步和多步实时在线预测,并讨论了不同测量噪声对该方法的影响. 仿真结果表明,该方法能有效提高永磁同步电机混沌系统的建模精度,具有良好的抗噪能力.

关 键 词:永磁同步电机,多核学习,最小二乘支持向量机,混沌预测

Chaos modeling and real-time online prediction of permanent magnet synchronous motor based on multiple kernel least squares support vector machine
Chen Qiang and Ren Xue-Mei. Chaos modeling and real-time online prediction of permanent magnet synchronous motor based on multiple kernel least squares support vector machine[J]. Chinese Physics B, 2010, 19(4): 2310-2318
Authors:Chen Qiang and Ren Xue-Mei
Abstract:A multiple kernel least squares support vector machine (MK-LSSVM) modeling method is proposed for the chaos of permanent magnet synchronous motor (PMSM). An equivalent kernel is built by linear-weighted combination of multi kernels to reduce the dependence of modeling accuracy on kernel function and parameters. The solutions of regression parameters and MK-LSSVM output are given in theory. C-C method is employed for the phase space reconstruction of PMSM chaos, then one-step and multi-step real-time online prediction of reconstructed chaotic series are investigated based on moving window learning method. The effect of different measurement noises on the proposed method is discussed. Simulations show that the proposed method can enhance the modeling accuracy and have strong anti-noise capability.
Keywords:permanent magnet synchronous motor   multiple-kernel learning   least squares support vector machine   chaotic prediction
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号