摘 要: | 在分析模糊C均值聚类算法与支持向量机回归的特点后,将二者结合,提出了模糊聚类支持向量机回归(FCM-SVR)算法,对空气中颗粒物浓度PM2.5进行预测.该方法首先利用模糊C均值聚类算法把一个复杂的数据集分成多个群体,再在每个群体上建立支持向量机回归(SVR)模型,然后进行集成,对区域空气的PM2.5浓度进行预测.预测结果分别与自组织竞争神经网络支持向量机回归(SOM-SVR)模型和单一的支持向量机回归(SVR)的结果进行比较.结果表明,FCM-SVR模型的预报准确率高于SOM-SVR模型和SVR模型.
|