摘 要: | 设(X_4,θ_4),i=1,2,…,n,是d 1维随机向量(X,θ)的iid.样本。又设L_n是平方损失下最近邻(简记为NN)预测在给定(X_4,θ_4),i=1,2,…n条件下的风险。众所周知,在一定条件下L_n→2E~*,a.s.,这里R~*表示Bayes风险。L_n的NN估计定义为其中θ_(nj)表示以(X_1,θ_1),…,(X_(j-1),θ_(j-1),(X_(j 1),θ_(j 1),…,(X_n,θ_n)为训练样本时,通过X_j=x_j对θ_j所做的NN预测。本文在E|θ|~(2 δ)<∞(δ>0)以及其他一些条件下证明了其中ξ是一个事先任意给定的近于0的正常数。
|