首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct numerical simulation of the flow in the intake pipe of an internal combustion engine
Institution:1. Aerothermochemistry and Combustion Systems Laboratory, ETH Zurich, Switzerland;2. Department of Computer Science, University of Illinois, Urbana-Champaign, IL, U.S.A.;3. Mathematics and Computer Science Division, Argonne National Laboratory, Chicago, IL, U.S.A.;4. Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece
Abstract:The incompressible flow in the intake pipe of a laboratory-scale internal combustion engine at Reynolds numbers corresponding to realistic operating conditions was studied with the help of direct numerical simulations. The mass flow through the curved pipe remained constant and the valve was held fixed at its halfway-open position, as is typically done in steady flow engine test bench experiments for the optimization of the intake manifold. The flow features were identified as the flow evolves in the curved intake pipe and interacts with the cylindrical valve stem. The sensitivity of the flow development on the velocity profile imposed at the inflow boundary was assessed. It was found that the flow can become turbulent very quickly depending on the inflow profile imposed at the pipe inlet, even though no additional noise was added to mimic turbulent velocity fluctuations. The transition to turbulence results from competing and interacting instability mechanisms both at the inner curved part of the intake pipe and at the valve stem wake. Azimuthal variations in the local mass flow exiting the intake pipe were identified, in agreement with previously reported measurement results, which are known to play an important role in the charging motion inside the cylinder of an internal combustion engine.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号