首页 | 本学科首页   官方微博 | 高级检索  
     


On deviations between empirical and quantile processes for mixing random variables
Authors:Gutti Jogesh Babu  Kesar Singh
Affiliation:Indian Statistical Institute, Calcutta, India
Abstract:Let {Xn} be a strictly stationary φ-mixing process with Σj=1 φ1/2(j) < ∞. It is shown in the paper that if X1 is uniformly distributed on the unit interval, then, for any t [0, 1], |Fn−1(t) − t + Fn(t) − t| = O(n−3/4(log log n)3/4) a.s. and sup0≤t≤1 |Fn−1(t) − t + Fn(t) − t| = (O(n−3/4(log n)1/2(log log n)1/4) a.s., where Fn and Fn−1(t) denote the sample distribution function and tth sample quantile, respectively. In case {Xn} is strong mixing with exponentially decaying mixing coefficients, it is shown that, for any t [0, 1], |Fn−1(t) − t + Fn(t) − t| = O(n−3/4(log n)1/2(log log n)3/4) a.s. and sup0≤t≤1 |Fn−1(t) − t + Fn(t) − t| = O(n−3/4(log n)(log log n)1/4) a.s. The results are further extended to general distributions, including some nonregular cases, when the underlying distribution function is not differentiable. The results for φ-mixing processes give the sharpest possible orders in view of the corresponding results of Kiefer for independent random variables.
Keywords:Stationarity   φ  -mixing   strong-mixing   empirical distribution function   quantiles   Markov's inequality   Borel-Cantelli lemma   law of iterated logarithm   central limit theorem   strong approximations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号