首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Probing Liquid-Liquid Phase Separation of a Polyethylene Blend with Thermal Analysis
Authors:Minqiao Ren  Changjiang Wu  Jianfang Sheng  Meifang Guo  Erqiang Chen
Institution:1. SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China;2. Department of Polymer Science and Engineering, Peking University, Beijing 100871, China
Abstract:Summary: A series of polyethylene (PE) blends consisting of a high density polyethylene (HDPE) and a linear low density polyethylene (LLDPE) with a butene-chain branch density of 77/1000 carbon was prepared at different concentrations. The LLDPE only crystallized below 50 °C, therefore, above 80 °C and below the melting temperature of HDPE, only HDPE crystallized in the PE blends. A specifically designed multi-step experimental procedure based on thermal analysis technique was utilized to monitor the liquid–liquid phase separation (LLPS) of this set of PE blends. The main step was first to quench the system from the homogeneous temperatures and isothermally anneal them at a prescribed temperature higher than the equilibrium melting temperature of the HDPE for the purpose of allowing the phase morphology to develop from LLPS, and then cool the system at constant rate to record the non-isothermal crystallization. The crystallization peak temperature (Tp) was used to character the crystallization rate. Because LLPS results in HDPE-rich domains where the crystallization rates are increased, this technique provided an experimental measure to identify the binodal curve of the LLPS for the system indicated by increased Tp. The result showed that the LLPS boundary of the blend measured by this method was close to that obtained by phase contrast optical microscopy method. Therefore, we considered that the thermal analysis technique based on the non-isothermal crystallization could be effective to investigate the LLPS of PE blends.
Keywords:liquid-liquid phase separation (LLPS)  non-isothermal crystallization  polyethylene blends
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号