首页 | 本学科首页   官方微博 | 高级检索  
     


IR frequencies and intensities of the vibrational modes of Cx Hy fragments bonded to metal complexes. Relationship with structure,bonding and reactivity
Affiliation:1. Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA;2. NASA Glenn Research Center, Cleveland, OH 44135, USA;3. Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
Abstract:
The following organometallic complexes were studied as models of the coordination between metal atoms and different Cx Hy ligands: Co2Fe(CO)9(CCH2), Co2Ru(CO)9(CCH2), Os3(H)2(CO)9(CCH2) and Co2Fe(CO)9(CC(H)CH3) (η32-vinylidene or μ32-methylvinylidene group); Fe2(C5H5)2(CO)3(CCH2) (μ21-vinylidene group); Os3(μ-H)(CO)9(CHCH2) (μ22-vinyl group); CH3Mn(CO)51-methyl group); Os3(μ-H)2(Co)10(CH2) and Fe2(CO)8(CH2) (μ21-methylene group); Co3(CO)9(CH) (μ3-methyne group); CO3(CO)9(CCH3) (μ31-ethylidyne group); Os3(H)(CO)9(C2H) (μ32-acetylide group). The infrared frequencies and intensities associated with the main vibrational modes of the ligands (CC and CH stretchings, CH deformations) were evaluated and compared with those of appropriate model molecules. Both the frequency and intensity data can be usefully correlated with structural parameters (e.g. CC and CH bond distances and HCH bond angles) and provide information on the charge distribution on the ligands. It is therefore possible to discuss the type of metal—ligand interaction and the balance between the σ and π contributions to the bond.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号