首页 | 本学科首页   官方微博 | 高级检索  
     

基于SOM&SVM组合分类器的客户细分方法实证研究
引用本文:邰丽君,胡如夫,赵韩,陈曹维. 基于SOM&SVM组合分类器的客户细分方法实证研究[J]. 数学的实践与认识, 2012, 42(11): 139-146
作者姓名:邰丽君  胡如夫  赵韩  陈曹维
作者单位:1. 宁波工程学院机械工程学院,浙江宁波,315000
2. 合肥工业大学机械与汽车工程学院,安徽合肥,230009
摘    要:为解决传统的RFM客户细分方法还不能很好地刻画客户行为,同时也没有就RFM指标权重进行分析这一问题,在RFM指标的基础上扩充了客户细分的指标体系,并提出了基于AHP的RFM指标权重确定策略.鉴于传统的单一分类器存在的很多缺陷,提出基于SOM&SVM的组合分类器模型,充分利用SOM和SVM单一分类器各自的优点,综合两种分类器的分类信息,避免单一分类器可能存在的片面性,从而提高分类的准确性.最后通过实例对上述模型的有效性进行验证.

关 键 词:SOM  SVM  组合分类器  客户细分

Empirical Research of Customer Segmentation Methods Based on Som&Svm Combining Classifiers
TAI Li-jun , HU Ru-fu , ZHAO Han , CHEN Cao-wei. Empirical Research of Customer Segmentation Methods Based on Som&Svm Combining Classifiers[J]. Mathematics in Practice and Theory, 2012, 42(11): 139-146
Authors:TAI Li-jun    HU Ru-fu    ZHAO Han    CHEN Cao-wei
Affiliation:1 (1.School of Mechanical Engineering,Ningbo University of Technology,Ningbo 315000,China) (2.School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,China)
Abstract:To solve the problem that the traditional RFM customer segmentation methods can not describe customer behavior preferably and did not analysis the RFM index weight, the customer segmentation index system was expanded on the basis of RFM index and the RFM index weight determination strategy based on AHP was proposed.In view of a great many defects exist in the traditional single classifier,a combining classifiers model based on SOM&SVM was proposed,the respective advantages of SOM&SVM single classifier was fully used,the classified information of two classifiers were synthesized,to avoid one-sidedness may possibly exist in the single classifier,in order to improve the classified accuracy.Finally, effectiveness of the proposed model was Validated by an example.
Keywords:SOM  SVM  combining classifiers  customer segmentation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号