首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental determination of the free-stream disturbance field in a short-duration supersonic wind tunnel
Authors:J.?Weiss  author-information"  >  author-information__contact u-icon-before"  >  mailto:julien.weiss@swissinfo.org"   title="  julien.weiss@swissinfo.org"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,H.?Knauss,S.?Wagner
Affiliation:(1) Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70550 Stuttgart, Germany;(2) Present address: ALSTOM (Switzerland) Ltd., Brown Bovery Strasse 7, 5401 Baden, Switzerland
Abstract:The free-stream disturbance field in a short-duration supersonic wind tunnel is investigated at a nominal Mach number of Ma=2.54. A specially designed constant-temperature anemometer is used to be able to draw a complete fluctuation diagram within one wind tunnel run (testing time: 120 ms). It is shown that the disturbance field is dominated by acoustic waves radiated from the turbulent boundary layer on the nozzle and the sidewalls, like in conventional supersonic wind tunnels. The acoustic field appears to be composed of highly localized shivering Mach waves superimposed on a background of eddy Mach waves.Abbreviations  a constant in the thermal conductivity/temperature power law of air: k/kr=(T/Tr)a (dimensionless) - b constant in the viscosity/temperature power law of air: mgr/mgrr=(T/Tr)b (dimensionless) - Be bandwidth (Hz) - A, B constants in the wire heat transfer relation (Eq. (7), dimensionless) - agr $$ left( {1 + {{gamma - 1} over 2}Ma^2 } right)^{ - 1} $$ (dimensionless) - cp specific heat at constant temperature (kJ/kg K) - cv specific heat at constant volume (kJ/kg K) - delta boundary layer thickness (m) - D function of the overheat ratio (dimensionless) - e anemometer output voltage (V) - epsiF end-loss attenuation factor for mass flow sensitivity (dimensionless) - epsiG end-loss attenuation factor for total temperature sensitivity (dimensionless) - eegr recovery factor (dimensionless) - f frequency (Hz) - f1 normalized frequency (dimensionless) - F anemometer nondimensional sensitivity to mass flow fluctuations (dimensionless) - G anemometer nondimensional sensitivity to total temperature fluctuations (dimensionless) - FAC epsiF×F (dimensionless) - GAC epsiG×G (dimensionless) - f,g functions in the wire heat transfer relation (Eq. (7), dimensionless) - gamma cp/cv (dimensionless) - k thermal conductivity of air (W/m K) - kr thermal conductivity of air at temperature Tr (W/m K) - ktheta anemometer sensitivity to total temperature fluctuations (V/K) - l Mach rhombus half-length (Fig. 1, m) - Ma Mach number (dimensionless) - mgr viscosity of air (kg/m·s) - mgrr viscosity of air at temperature Tr (kg/m·s) - n constant in the wire heat transfer relation (Eq. (7), dimensionless) - Nu Nusselt number (dimensionless) - p pressure (Pa) - p0 stagnation pressure (Pa) - r –F/G (dimensionless) - R unit Reynolds number (1/m) - Re Reynolds number (dimensionless) - $$ R_{{rho u,T_{0} }} $$ correlation coefficient between mass flow and total temperature fluctuations (dimensionless) - rgr density (kg/m3) - T time span (s) - T0 total temperature (K) - Tr reference temperature (K) - Tw hot wire temperature (K) - tau overheat ratio: tau=(TweegrT0)/T0 (dimensionless) - THgr –<e>/G (%) - u x-component of the flow velocity (m/s) - us source velocity at acoustic origin (m/s) - uinfin inviscid velocity at acoustic origin (m/s) - x wind tunnel axis (Fig. 1, m)Symbols  x̄ temporal mean value of a fluctuating quantity x - xprime fluctuating part of x: xprime=xx̄ - xRMS' root mean square of xprime - <xxRMS'/x̄ - epsi(X) relative uncertainty of a random variable X
Contact InformationJ. WeissEmail:
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号