首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of future observations using belief functions: A likelihood-based approach
Affiliation:1. Faculty of Management Sciences, Chiang Mai Rajabhat University, Thailand;2. Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7253 Heudiasyc, France;3. Faculty of Economics, Chiang Mai University, Thailand
Abstract:
We study a new approach to statistical prediction in the Dempster–Shafer framework. Given a parametric model, the random variable to be predicted is expressed as a function of the parameter and a pivotal random variable. A consonant belief function in the parameter space is constructed from the likelihood function, and combined with the pivotal distribution to yield a predictive belief function that quantifies the uncertainty about the future data. The method boils down to Bayesian prediction when a probabilistic prior is available. The asymptotic consistency of the method is established in the iid case, under some assumptions. The predictive belief function can be approximated to any desired accuracy using Monte Carlo simulation and nonlinear optimization. As an illustration, the method is applied to multiple linear regression.
Keywords:Dempster–Shafer theory  Evidence theory  Statistical inference  Forecasting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号