Modeling of complex fluids using micro-macro approach with transient network dynamics |
| |
Authors: | V.?H.?Ferrer,A.?Gómez,J.?A.?Ortega,O.?Manero,E.?Rincón,F.?López-Serrano,R.?O.?Vargas mailto:rvargasa@ipn.mx" title=" rvargasa@ipn.mx" itemprop=" email" data-track=" click" data-track-action=" Email author" data-track-label=" " >Email author |
| |
Affiliation: | 1.ESIME-Zacatenco,Instituto Politécnico Nacional,Ciudad de México,Mexico;2.Facultad de Ingeniería,Universidad Nacional Autónoma de México,Ciudad de México,Mexico;3.Instituto de Investigaciones en Materiales,Universidad Nacional Autónoma de México, Ciudad Universitaria,Ciudad de México,Mexico;4.Departamento de Física y Matemáticas,Universidad Iberoamericana Ciudad de México,Ciudad de México,Mexico;5.Departamento de Ingeniería Química, Facultad de Química,Universidad Nacional Autónoma de México,Ciudad de México,Mexico;6.ESIME Azcapotzalco,Instituto Politécnico Nacional,Ciudad de México,Mexico |
| |
Abstract: | In this work, the micro-macro approach is used to simulate the flow of dilute polymer solutions by means of a kinetic model coupled with the dynamics of a transient network. The transient network modeling is based on the original formulation, in which the kinetics of microstates describes the complexity of interactions among the macromolecules suspended in a Newtonian solvent (Rincón et al, J Non-Newton Fluid 131:64–77, 2005). The average concentration of microstates, at a given time, defines a variable maximum segment length (variable extensibility) of the molecular FENE model. The non-Newtonian contribution to the extra stress tensor is computed according to the Brownian configuration-fields method. Comparisons with the Oldroyd-B model validates its limiting behavior. Numerical results show the influence of the solvent to total viscosity ratio and shear rate, on the transient and steady rheological phenomena of complex fluids with microstates. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|