首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Knudsen number and geometry on gaseous flow and heat transfer in a constricted microchannel
Authors:Hossein Shokouhmand  Sajjad Bigham  Rasool Nasr Isfahani
Affiliation:(1) Department of Mechanical Engineering, University of Tehran, Tehran, Iran;
Abstract:A flow and heat transfer numerical simulation is performed for a 2D laminar incompressible gas flow through a constricted microchannel in the slip regime with constant wall temperature. The effects of rarefaction, creeping flow, first order slip boundary conditions and hydrodynamically/thermally developing flow are assumed. The effects of Knudsen number and geometry on thermal and hydrodynamic characteristics of flow in a constricted microchannel are explored. SIMPLE algorithm in curvilinear coordinate is used to solve the governing equations including continuity, energy and momentum with the temperature jump and velocity slip conditions at the solid walls in discretized form. The resulting velocity and temperature profiles are then utilized to obtain the microchannel C f Re and Nusselt number as a function of Knudsen number and geometry. The results show that Knudsen number has declining effect on the C f Re and Nusselt number in the constricted microchannel. In addition, the temperature jump on wall and slip velocity increase with increasing Knudsen number. Moreover, by decreasing the throttle area, the fluid flow characteristics experience more intense variations in the constricted region. To verify the code a comparison is carried out with available results and good agreement is achieved.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号