首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gas-phase photodissociation of CH3COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy
Authors:Yeh Yu-Ying  Chao Meng-Hsuan  Tsai Po-Yu  Chang Yuan-Bin  Tsai Ming-Tsang  Lin King-Chuen
Institution:Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
Abstract:By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v = 1, 2) and CO(v = 1-3) are detected in one-photon dissociation of acetyl cyanide (CH(3)COCN) at 308 nm. The S(1)(A(")), (1)(n(O), π(?) (CO)) state at 308 nm has a radiative lifetime of 0.46 ± 0.01 μs, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) × 10(-12) cm(3) molecule(-1) s(-1). The measurements of O(2) dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 ± 7 and 32 ± 3 kJ∕mol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN + CH(2)CO, in which the CH(2)CO moiety may further undergo secondary dissociation to release CO. The production of CO(2) in the reaction with O(2) confirms existence of CH(2) and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH(3) fragments that dominate the dissociation products at 193 nm are not detected.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号