首页 | 本学科首页   官方微博 | 高级检索  
     


A BFGS-IP algorithm for solving strongly convex optimization problems with feasibility enforced by an exact penalty approach
Authors:Paul Armand  J. Charles Gilbert  Sophie Jan-Jégou
Affiliation:(1) LACO – Université de Limoges, Faculté des Sciences, 123, avenue Albert Thomas, 87060 Limoges, France; e-mail: armand@unilim.fr, FR;(2) INRIA Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France; e-mail: Jean-Charles.Gilbert@inria.fr, FR;(3) MIP, UFR MIG, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 4, France; e-mail: jan@mip.ups-tlse.fr, FR
Abstract:This paper introduces and analyses a new algorithm for minimizing a convex function subject to a finite number of convex inequality constraints. It is assumed that the Lagrangian of the problem is strongly convex. The algorithm combines interior point methods for dealing with the inequality constraints and quasi-Newton techniques for accelerating the convergence. Feasibility of the iterates is progressively enforced thanks to shift variables and an exact penalty approach. Global and q-superlinear convergence is obtained for a fixed penalty parameter; global convergence to the analytic center of the optimal set is ensured when the barrier parameter tends to zero, provided strict complementarity holds. Received: December 21, 2000 / Accepted: July 13, 2001?Published online February 14, 2002
Keywords:: analytic center –   BFGS quasi-Newton approximations –   constrained optimization –   convex programming –   infeasible iterates –   interior point algorithm –   line-search –   primal-dual method –   shift and slack variables –   superlinear convergence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号