首页 | 本学科首页   官方微博 | 高级检索  
     检索      


H+ versus D+ transfer from HOD+ to CO2: bond-selective chemistry and the anomalous effect of bending excitation
Authors:Bell David M  Boyle Jason M  Anderson Scott L
Institution:Department of Chemistry, University of Utah, 315 S. 1400 E. Rm 2020, Salt Lake City, Utah 84112, USA.
Abstract:Reactions of HOD(+) with CO(2) have been studied for HOD(+) in its ground state, and with one quantum of excitation in each of its vibrational modes: (001)--predominantly OH stretch, 0.396 eV; (010)--bend, 0.153 eV; and (100)--predominantly OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 3 eV. The cross sections for both H(+) and D(+) transfer rise with increasing collision energy from threshold to ~1 eV, then become weakly dependent of the collision energy. All three vibrational modes enhance the total reactivity, but quite mode specifically. The H(+) transfer reaction is enhanced by OH stretch excitation, whereas OD stretch excitation has little effect. Conversely, the D(+) transfer reaction is enhanced by OD stretch excitation, while the OH stretch has little effect. Excitation of the bend strongly enhances both channels. The effects of the stretch excitations are consistent with previous studies of neutral HOD mode-selective chemistry, and can be at least qualitatively understood in terms of a late barrier to product formation. The fact that bend excitation produces the largest overall enhancement is surprising, because this is the lowest energy excitation, and is not obviously connected with the reaction coordinates for either H(+) or D(+) transfer. A rationalization in terms of the effects of water distortion on the potential surface is proposed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号