首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct hydroxide attack is a plausible mechanism for amidase antibody 43C9
Authors:Chong Lillian T  Bandyopadhyay Pradipta  Scanlan Thomas S  Kuntz Irwin D  Kollman Peter A
Institution:Graduate Group in Biophysics and Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143-2240, USA. ltchong@stanford.edu
Abstract:Direct hydroxide attack on the scissile carbonyl of the substrate has been suggested as a likely mechanism for esterase antibodies elicited by phosphonate haptens, which mimic the transition states for the alkaline hydrolysis of esters.1 The unique amidase activity of esterase antibody 43C9 has been attributed to nucleophilic attack by an active-site histidine residue.2 Yet, the active site of 43C9 is strikingly similar to those of other esterase antibodies, particularly 17E8. We have carried out quantum mechanical calculations, molecular dynamics simulations, and free energy calculations to assess the mechanism involving direct hydroxide attack for 43C9. Results support this mechanism and suggest that the mechanism is plausible for other antiphosphonate antibodies that catalyze the hydrolysis of (p-nitro)phenyl esters.
Keywords:catalytic antibodies  amide/ester hydrolysis  quantum mechanical calculations  free energy calculations  molecular dynamics simulations
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号