首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanical,acoustical and flammability properties of SBR and SBR-PU foam layered structure
Abstract:In this work a layer structure from styrene butadiene rubber (SBR) composites and PU foam with improved flame retardancy property and high sound absorption coefficient at frequency range (200–500 Hz). Different types of flame retardants; iron (acrylic-co-acrylamide) as metal chelate (MC), magnesium hydroxide (MOH) and sodium tripolyphosphate (STP) were blended with SBR. The type and loading level of flame retardant had a great effect on filler dispersion and consequently on mechanical properties of SBR. MOH exhibited the best dispersion as indicated from scanning electron microscope (SEM), and SBR/MOH samples had almost the highest crosslink density (16.04*10−5 g−1 mol) and the best mechanical properties where the tensile strength was improved by 32.7% at 40 phr MOH. Horizontal burning rate of SBR composites indicated that MC and MOH reduced the rate of burning of SBR at all loading levels. TGA data presented that the addition of flame retardants to SBR increased the maximum decomposition temperature in all composites. A double and triple layer structures of SBR composite and PU foam was designed. The effect of 2.5 cm air cavity on the sound absorption coefficient of SBR-PU foam layered structure was studied. The presence of air cavity behind the layered structure improved the sound absorption in the range of (200–500 Hz) better than the existence of it between the layers. The triple-layer structure gave higher sound absorption coefficient at lower frequencies than that obtained with the double-layer structure where it reached to ≥0.98 at 315 Hz.
Keywords:Acoustic  Flame retardant  Absorption  Mechanical  Thermal
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号